104,292 research outputs found

    Models in the Cloud: Exploring Next Generation Environmental Software Systems

    Get PDF
    There is growing interest in the application of the latest trends in computing and data science methods to improve environmental science. However we found the penetration of best practice from computing domains such as software engineering and cloud computing into supporting every day environmental science to be poor. We take from this work a real need to re-evaluate the complexity of software tools and bring these to the right level of abstraction for environmental scientists to be able to leverage the latest developments in computing. In the Models in the Cloud project, we look at the role of model driven engineering, software frameworks and cloud computing in achieving this abstraction. As a case study we deployed a complex weather model to the cloud and developed a collaborative notebook interface for orchestrating the deployment and analysis of results. We navigate relatively poor support for complex high performance computing in the cloud to develop abstractions from complexity in cloud deployment and model configuration. We found great potential in cloud computing to transform science by enabling models to leverage elastic, flexible computing infrastructure and support new ways to deliver collaborative and open science

    SOSE4BD: Service-oriented software engineering framework for big data applications

    Get PDF
    © 2019 by SCITEPRESS - Science and Technology Publications, Lda. Service computing has emerged to address the notion of delivering software as a service and Service-Oriented Architecture emerged as a design method supporting well defined design principles of loose coupling, interface design, autonomic computing, seamless integration, and publish/subscribe paradigm. Integrated big data applications with IoT, Fog, and Cloud Computing grow exponentially: businesses as well as the speed of the data and its storage. Therefore, it is time to consider systematic and engineering approach to developing and deploying big data services as the data-driven applications and devices increasing rapidly. This paper proposes a software engineering framework and a reference architecture which is SOA based for big data applications' development. This paper also concludes with a simulation of a complex big data Facebook application with real-time streaming using part of the requirements engineering aspect of the SOSE4BD framework with BPMN as a tool for requirement modelling and simulation to study the characteristics before big data service design, development, and deployment. The simulation results demonstrated the efficiency and effectiveness of developing big data applications using the reference architecture framework for big data

    Competitive advantage during industry 4.0: the case for South African manufacturing SMEs

    Get PDF
    A research report submitted to the Faculty of Engineering and the Built Environment, Uni- versity of the Witwatersrand, Johannesburg, in partial fullfilment of the requirements for the degree of Master of Science in Engineering. Johannesburg, May 2018With the expected disruption of industry 4.0 and the current challenges that SMEs face in South Africa, there is an increasing threat that SMEs will lose any competitive advantage they currently have. This exploratory study investigates how South African manufacturing SMEs can remain competitive during the fourth industrial revolution. Data, in the form of current literature, was analysed using thematic content analysis. From the analysis process, 8 emergent themes were used to organise the results of the study. Notable findings towards generating competitive advantage included: The location of SMEs within clusters, collaboration with disruption leaders, the sharing of outcomes across the value chain, the shift of business models towards a service and software orientation, the use of data driven insights to find and capture high margin markets and the increased effectiveness of labour through technology use. The study also found that the use of the IoT and cloud computing can significantly reduce infrastructure requirements and promote a competitive advantage.MT 201

    Design space exploration and optimization of path oblivious RAM in secure processors

    Get PDF
    Keeping user data private is a huge problem both in cloud computing and computation outsourcing. One paradigm to achieve data privacy is to use tamper-resistant processors, inside which users' private data is decrypted and computed upon. These processors need to interact with untrusted external memory. Even if we encrypt all data that leaves the trusted processor, however, the address sequence that goes off-chip may still leak information. To prevent this address leakage, the security community has proposed ORAM (Oblivious RAM). ORAM has mainly been explored in server/file settings which assume a vastly different computation model than secure processors. Not surprisingly, naïvely applying ORAM to a secure processor setting incurs large performance overheads. In this paper, a recent proposal called Path ORAM is studied. We demonstrate techniques to make Path ORAM practical in a secure processor setting. We introduce background eviction schemes to prevent Path ORAM failure and allow for a performance-driven design space exploration. We propose a concept called super blocks to further improve Path ORAM's performance, and also show an efficient integrity verification scheme for Path ORAM. With our optimizations, Path ORAM overhead drops by 41.8%, and SPEC benchmark execution time improves by 52.4% in relation to a baseline configuration. Our work can be used to improve the security level of previous secure processors.National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374)American Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipUnited States. Defense Advanced Research Projects Agency (Clean-slate design of Resilient, Adaptive, Secure Hosts Contract N66001-10-2-4089

    Real-time agreement and fulfilment of SLAs in Cloud Computing environments

    Full text link
    A Cloud Computing system must readjust its resources by taking into account the demand for its services. This raises the need for designing protocols that provide the individual components of the Cloud architecture with the ability to self-adapt and to reach agreements in order to deal with changes in the services demand. Furthermore, if the Cloud provider has signed a Service Level Agreement (SLA) with the clients of the services that it offers, the appropriate agreement mechanism has to ensure the provision of the service contracted within a specified time. This paper introduces real-time mechanisms for the agreement and fulfilment of SLAs in Cloud Computing environments. On the one hand, it presents a negotiation protocol inspired by the standard WSAgreement used in web services to manage the interactions between the client and the Cloud provider to agree the terms of the SLA of a service. On the other hand, it proposes the application of a real-time argumentation framework for redistributing resources and ensuring the fulfilment of these SLAs during peaks in the service demand.This work is supported by the Spanish government Grants CONSOLIDER-INGENIO 2010 CSD2007-00022, TIN2011-27652-C03-01, TIN2012-36586-C03-01 and TIN2012-36586-C03-03.De La Prieta, F.; Heras Barberá, SM.; Palanca Cámara, J.; Rodríguez, S.; Bajo, J.; Julian Inglada, VJ. (2014). Real-time agreement and fulfilment of SLAs in Cloud Computing environments. AI Communications. 1-24. doi:10.3233/AIC-140626S124[1]V. Aleven and K.D. Ashley, Teaching case-based argumentation through a model and examples, empirical evaluation of an intelligent learning environment, in: Artificial Intelligence in Education, AIED-97, Frontiers in Artificial Intelligence and Applications, Vol. 39, IOS Press, 1997, pp. 87–94.[2]M. Alhamad, W. Perth, T. Dillon and E. Chang, Conceptual SLA framework for cloud computing, in: 4th IEEE International Conference on Digital Ecosystems and Technologies (DEST), IEEE Press, 2010, pp. 606–610.Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A. D., … Rabkin, A. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50. doi:10.1145/1721654.1721672Ashley, K. D. (1991). Reasoning with cases and hypotheticals in HYPO. International Journal of Man-Machine Studies, 34(6), 753-796. doi:10.1016/0020-7373(91)90011-u[6]P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt and A. Warfield, Xen and the art of virtualization, in: 9th ACM Symposium on Operating Systems Principles (SOSP-03), ACM Press, 2003, pp. 164–177.Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing. Future Generation Computer Systems, 28(5), 755-768. doi:10.1016/j.future.2011.04.017[8]A. Beloglazov and R. Buyya, Energy efficient allocation of virtual machines in cloud data centers, in: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, IEEE Computer Society, 2010, pp. 577–578.[9]A. Beloglazov and R. Buyya, Energy efficient resource management in virtualized cloud data centers, in: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, IEEE Computer Society, 2010, pp. 826–831.Bench-Capon, T., & Sartor, G. (2003). A model of legal reasoning with cases incorporating theories and values. Artificial Intelligence, 150(1-2), 97-143. doi:10.1016/s0004-3702(03)00108-5[11]T.J. Bench-Capon, Specification and implementation of Toulmin dialogue game, in: International Conferences on Legal Knowledge and Information Systems, JURIX-98, Frontiers of Artificial Intelligence and Applications, IOS Press, 1998, pp. 5–20.[12]R. Buyya, R. Ranjan and R.N. Calheiros, Intercloud: Utility-oriented federation of cloud computing environments for scaling of application services, in: 10th International Conference on Algorithms and Architectures for Parallel Processing – Volume Part I, ICA3PP’10, Springer-Verlag, 2010, pp. 13–31.[13]R. Buyya, C.S. Yeo and S. Venugopal, Market-oriented cloud computing: Vision, hype, and reality for delivering it services as computing utilities, in: High Performance Computing and Communications, 2008. HPCC’08. 10th IEEE International Conference, September 2008, IEEE, 2008, pp. 5–13.Chen, C., Li, S. S., Chen, B., & Wen, D. (2011). Agent Recommendation for Agent-Based Urban-Transportation Systems. IEEE Intelligent Systems, 26(6), 77-81. doi:10.1109/mis.2011.94[15]Y.Y. Cheng, M. Low, S. Zhou, W. Cai and C.S. Choo, Evolving agent-based simulations in the clouds, in: 3rd International Workshop on Advanced Computational Intelligence (IWACI), 2010, pp. 244–249.[16]F. Dignum and H. Weigand, Communication and Deontic Logic, in: Information Systems – Correctness and Reusability. Selected Papers from the IS-CORE Workshop, R. Wieringa and R. Feenstra, eds, World Scientific Publishing Co., 1995, pp. 242–260.Erdogmus, H. (2009). Cloud Computing: Does Nirvana Hide behind the Nebula? IEEE Software, 26(2), 4-6. doi:10.1109/ms.2009.31[19]J.O. Fitó, I. Goiri and J. Guitart, SLA-driven elastic cloud hosting provider, in: 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), IEEE Computer Society, 2010, pp. 111–118.Fuentes-Fernández, R., Hassan, S., Pavón, J., Galán, J. M., & López-Paredes, A. (2012). Metamodels for role-driven agent-based modelling. Computational and Mathematical Organization Theory, 18(1), 91-112. doi:10.1007/s10588-012-9110-5Heras, S., Botti, V., & Julián, V. (2009). Challenges for a CBR framework for argumentation in open MAS. The Knowledge Engineering Review, 24(4), 327-352. doi:10.1017/s0269888909990178Heras, S., Jordán, J., Botti, V., & Julián, V. (2013). Argue to agree: A case-based argumentation approach. International Journal of Approximate Reasoning, 54(1), 82-108. doi:10.1016/j.ijar.2012.06.005[24]M. Jensen, J. Schwenk, N. Gruschka and L. Iacono, On technical security issues in cloud computing, in: IEEE International Conference on Cloud Computing, IEEE Press, 2009, pp. 109–116.Kakas, A., Maudet, N., & Moraitis, P. (2005). Modular Representation of Agent Interaction Rules through Argumentation. Autonomous Agents and Multi-Agent Systems, 11(2), 189-206. doi:10.1007/s10458-005-2176-4[26]M.J. Kim, H.G. Yoon and H.K. Lee, MAV: An intelligent Multi-agent model based on Cloud computing for resource virtualization, in: Computers, Networks, Systems, and Industrial Engineering, Studies in Computational Intelligence, Vol. 365, Springer, 2011, pp. 99–111.Kraus, S., Sycara, K., & Evenchik, A. (1998). Reaching agreements through argumentation: a logical model and implementation. Artificial Intelligence, 104(1-2), 1-69. doi:10.1016/s0004-3702(98)00078-2[28]W.-Y. Lin, G.-Y. Lin and H.-Y. Wei, Dynamic auction mechanism for cloud resource allocation, in: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, CCGRID’10, IEEE Computer Society, Washington, DC, USA, 2010, pp. 591–592.[29]S. Liu, G. Quan and S. Ren, On-line scheduling of real-time services for cloud computing, in: 6th World Congress on Services, SERVICES’10, IEEE Computer Society, 2010, pp. 459–464.Navarro, M., Heras, S., Botti, V., & Julián, V. (2013). Towards real-time agreements. Expert Systems with Applications, 40(10), 3906-3917. doi:10.1016/j.eswa.2012.12.087Ontañón, S., & Plaza, E. (2011). An argumentation framework for learning, information exchange, and joint-deliberation in multi-agent systems1. Multiagent and Grid Systems, 7(2-3), 95-108. doi:10.3233/mgs-2011-0169Palanca, J., Navarro, M., García-Fornes, A., & Julian, V. (2013). Deadline prediction scheduling based on benefits. Future Generation Computer Systems, 29(1), 61-73. doi:10.1016/j.future.2012.05.007[33]C. Pautasso, O. Zimmermann and F. Leymann, Restful web services vs. “big”’ web services: making the right architectural decision, in: Proceedings of the 17th International Conference on World Wide Web, WWW’08, ACM, New York, NY, USA, 2008, pp. 805–814.[34]J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang and Q. Li, Comparison of several cloud computing platforms, in: 2nd International Symposium on Information Science and Engineering, ISISE’09, IEEE Computer Society, 2009, pp. 23–27.Prakken, H., & Sartor, G. (1998). Artificial Intelligence and Law, 6(2/4), 231-287. doi:10.1023/a:1008278309945[36]I. Rahwan and G. Simari, eds, Argumentation in Artificial Intelligence, Springer, 2009.Ross, J. W., & Westerman, G. (2004). Preparing for utility computing: The role of IT architecture and relationship management. IBM Systems Journal, 43(1), 5-19. doi:10.1147/sj.431.0005Schaffer, H. E. (2009). X as a Service, Cloud Computing, and the Need for Good Judgment. IT Professional, 11(5), 4-5. doi:10.1109/mitp.2009.112[39]K.M. Sim, Agent-based cloud commerce, in: IEEE International Conference on Industrial Engineering and Engineering Management, IEEE Press, 2009, pp. 717–721.Soh, L.-K., & Tsatsoulis, C. (2005). A Real-Time Negotiation Model and A Multi-Agent Sensor Network Implementation. Autonomous Agents and Multi-Agent Systems, 11(3), 215-271. doi:10.1007/s10458-005-0539-5Talia, D. (2012). Clouds Meet Agents: Toward Intelligent Cloud Services. IEEE Internet Computing, 16(2), 78-81. doi:10.1109/mic.2012.28Tolchinsky, P., Modgil, S., Atkinson, K., McBurney, P., & Cortés, U. (2011). Deliberation dialogues for reasoning about safety critical actions. Autonomous Agents and Multi-Agent Systems, 25(2), 209-259. doi:10.1007/s10458-011-9174-5[44]A. Toniolo, T. Norman and K. Sycara, An empirical study of argumentation schemes in deliberative dialogue, in: 20th European Conference on Artificial Intelligence, ECAI-12, Frontiers in Artificial Intelligence and Applications, Vol. 242, IOS Press, 2012, pp. 756–761.[45]W.-T. Tsai, Q. Shao, X. Sun and J. Elston, Real-time service-oriented cloud computing, in: IEEE 6th World Congress on Services, SERVICES’10, IEEE Press, 2010, pp. 473–478.[46]D. Walton, C. Reed and F. Macagno, Argumentation Schemes, Cambridge University Press, 2008.[47]L. Wang, J. Tao, M. Kunze, A. Castellanos, D. Kramer and W. Karl, Scientific cloud computing: Early definition and experience, in: 10th IEEE International Conference on High Performance Computing and Communications (HPCC-08), IEEE Press, 2008, pp. 825–830.[48]Y.O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Guitouni, S. Ganti and Y. Coady, Dynamic resource allocation in computing clouds using distributed multiple criteria decision analysis, in: IEEE 3rd International Conference on Cloud Computing (CLOUD), IEEE Computer Society, 2010, pp. 91–98.[49]Y. Yu, S. Ren, N. Chen and X. Wang, Profit and penalty aware (pp-aware) scheduling for tasks with variable task execution time, in: ACM Symposium on Applied Computing, SAC’10, ACM, 2010, pp. 334–339

    A formal architecture-centric and model driven approach for the engineering of science gateways

    Get PDF
    From n-Tier client/server applications, to more complex academic Grids, or even the most recent and promising industrial Clouds, the last decade has witnessed significant developments in distributed computing. In spite of this conceptual heterogeneity, Service-Oriented Architecture (SOA) seems to have emerged as the common and underlying abstraction paradigm, even though different standards and technologies are applied across application domains. Suitable access to data and algorithms resident in SOAs via so-called ‘Science Gateways’ has thus become a pressing need in order to realize the benefits of distributed computing infrastructures.In an attempt to inform service-oriented systems design and developments in Grid-based biomedical research infrastructures, the applicant has consolidated work from three complementary experiences in European projects, which have developed and deployed large-scale production quality infrastructures and more recently Science Gateways to support research in breast cancer, pediatric diseases and neurodegenerative pathologies respectively. In analyzing the requirements from these biomedical applications the applicant was able to elaborate on commonly faced issues in Grid development and deployment, while proposing an adapted and extensible engineering framework. Grids implement a number of protocols, applications, standards and attempt to virtualize and harmonize accesses to them. Most Grid implementations therefore are instantiated as superposed software layers, often resulting in a low quality of services and quality of applications, thus making design and development increasingly complex, and rendering classical software engineering approaches unsuitable for Grid developments.The applicant proposes the application of a formal Model-Driven Engineering (MDE) approach to service-oriented developments, making it possible to define Grid-based architectures and Science Gateways that satisfy quality of service requirements, execution platform and distribution criteria at design time. An novel investigation is thus presented on the applicability of the resulting grid MDE (gMDE) to specific examples and conclusions are drawn on the benefits of this approach and its possible application to other areas, in particular that of Distributed Computing Infrastructures (DCI) interoperability, Science Gateways and Cloud architectures developments

    A Pilot Experience with Software Programming Environments as a Service for Teaching Activities

    Full text link
    [EN] Software programming is one of the key abilities for the development of Computational Thinking (CT) skills in Science, Technology, Engineering and Mathematics (STEM). However, specific software tools to emulate realistic scenarios are required for effective teaching. Unfortunately, these tools have some limitations in educational environments due to the need of an adequate configuration and orchestration, which usually assumes an unaffordable work overload for teachers and is inaccessible for students outside the laboratories. To mitigate the aforementioned limitations, we rely on cloud solutions that automate the process of orchestration and configuration of software tools on top of cloud computing infrastructures. This way, the paper presents ACTaaS as a cloud-based educational resource that deploys and orchestrates a whole realistic software programming environment. ACTaaS provides a simple, fast and automatic way to set up a professional integrated environment without involving an overload to the teacher, and it provides an ubiquitous access to the environment. The solution has been tested in a pilot group of 28 students. Currently, there is no tool like ACTaaS that allows such a high grade of automation for the deployment of software production environments focused on educational activities supporting a wide range of cloud providers. Preliminary results through a pilot group predict its effectiveness due to the efficiency to set up a class environment in minutes without overloading the teachers, and providing ubiquitous access to students. In addition, the first student opinions about the experience were greatly positive.This research was funded by Conselleria d'Innovacio, Universitat, Ciencia i Societat Digital for the project "CloudSTEM" grant number AICO/2019/313, and the Vicerrectorado de Estudios, Calidad y Acreditacion of the Universitat Politecnica de Valencia grant number PIME/19-20/166.Calatrava Arroyo, A.; Ramos Montes, M.; Segrelles Quilis, JD. (2021). A Pilot Experience with Software Programming Environments as a Service for Teaching Activities. Applied Sciences. 11(1). https://doi.org/10.3390/app11010341S111Campbell, J. O., Bourne, J. R., Mosterman, P. J., & Brodersen, A. J. (2002). The Effectiveness of Learning Simulations for Electronic Laboratories. Journal of Engineering Education, 91(1), 81-87. doi:10.1002/j.2168-9830.2002.tb00675.xFraser, D. M., Pillay, R., Tjatindi, L., & Case, J. M. (2007). Enhancing the Learning of Fluid Mechanics Using Computer Simulations. Journal of Engineering Education, 96(4), 381-388. doi:10.1002/j.2168-9830.2007.tb00946.xTroussas, C., Krouska, A., & Sgouropoulou, C. (2020). Collaboration and fuzzy-modeled personalization for mobile game-based learning in higher education. Computers & Education, 144, 103698. doi:10.1016/j.compedu.2019.103698González-Martínez, J. A., Bote-Lorenzo, M. L., Gómez-Sánchez, E., & Cano-Parra, R. (2015). Cloud computing and education: A state-of-the-art survey. Computers & Education, 80, 132-151. doi:10.1016/j.compedu.2014.08.017Moreno, A. M., Sanchez-Segura, M.-I., Medina-Dominguez, F., & Carvajal, L. (2012). Balancing software engineering education and industrial needs. Journal of Systems and Software, 85(7), 1607-1620. doi:10.1016/j.jss.2012.01.060Desai, C., Janzen, D., & Savage, K. (2008). A survey of evidence for test-driven development in academia. ACM SIGCSE Bulletin, 40(2), 97-101. doi:10.1145/1383602.1383644Barriocanal, E. G., Urbán, M.-Á. S., Cuevas, I. A., & Pérez, P. D. (2002). An experience in integrating automated unit testing practices in an introductory programming course. ACM SIGCSE Bulletin, 34(4), 125-128. doi:10.1145/820127.820183OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=toscaTomarchio, O., Calcaterra, D., & Modica, G. D. (2020). Cloud resource orchestration in the multi-cloud landscape: a systematic review of existing frameworks. Journal of Cloud Computing, 9(1). doi:10.1186/s13677-020-00194-7Cloudify https://cloudify.coStarCluster http://web.mit.edu/stardev/cluster/ElastiCluster https://elasticluster.github.io/elasticluster/Apache ARIA TOSCA Orchestration Engine http://ariatosca.incubator.apache.orgOpenTOSCA http://www.opentosca.orgGiannakopoulos, I., Papailiou, N., Mantas, C., Konstantinou, I., Tsoumakos, D., & Koziris, N. (2014). CELAR: Automated application elasticity platform. 2014 IEEE International Conference on Big Data (Big Data). doi:10.1109/bigdata.2014.7004481Yangui, S., Marshall, I.-J., Laisne, J.-P., & Tata, S. (2013). CompatibleOne: The Open Source Cloud Broker. Journal of Grid Computing, 12(1), 93-109. doi:10.1007/s10723-013-9285-0Caballer, M., Blanquer, I., Moltó, G., & de Alfonso, C. (2014). Dynamic Management of Virtual Infrastructures. Journal of Grid Computing, 13(1), 53-70. doi:10.1007/s10723-014-9296-5Ansible https://www.ansible.com/JUnit Framework for Java https://junit.org/Check Unit Testing Framework for C https://libcheck.github.io/check

    SensorCloud: Towards the Interdisciplinary Development of a Trustworthy Platform for Globally Interconnected Sensors and Actuators

    Get PDF
    Although Cloud Computing promises to lower IT costs and increase users' productivity in everyday life, the unattractive aspect of this new technology is that the user no longer owns all the devices which process personal data. To lower scepticism, the project SensorCloud investigates techniques to understand and compensate these adoption barriers in a scenario consisting of cloud applications that utilize sensors and actuators placed in private places. This work provides an interdisciplinary overview of the social and technical core research challenges for the trustworthy integration of sensor and actuator devices with the Cloud Computing paradigm. Most importantly, these challenges include i) ease of development, ii) security and privacy, and iii) social dimensions of a cloud-based system which integrates into private life. When these challenges are tackled in the development of future cloud systems, the attractiveness of new use cases in a sensor-enabled world will considerably be increased for users who currently do not trust the Cloud.Comment: 14 pages, 3 figures, published as technical report of the Department of Computer Science of RWTH Aachen Universit

    Cloud Computing Security, An Intrusion Detection System for Cloud Computing Systems

    Get PDF
    Cloud computing is widely considered as an attractive service model because it minimizes investment since its costs are in direct relation to usage and demand. However, the distributed nature of cloud computing environments, their massive resource aggregation, wide user access and efficient and automated sharing of resources enable intruders to exploit clouds for their advantage. To combat intruders, several security solutions for cloud environments adopt Intrusion Detection Systems. However, most IDS solutions are not suitable for cloud environments, because of problems such as single point of failure, centralized load, high false positive alarms, insufficient coverage for attacks, and inflexible design. The thesis defines a framework for a cloud based IDS to face the deficiencies of current IDS technology. This framework deals with threats that exploit vulnerabilities to attack the various service models of a cloud system. The framework integrates behaviour based and knowledge based techniques to detect masquerade, host, and network attacks and provides efficient deployments to detect DDoS attacks. This thesis has three main contributions. The first is a Cloud Intrusion Detection Dataset (CIDD) to train and test an IDS. The second is the Data-Driven Semi-Global Alignment, DDSGA, approach and three behavior based strategies to detect masquerades in cloud systems. The third and final contribution is signature based detection. We introduce two deployments, a distributed and a centralized one to detect host, network, and DDoS attacks. Furthermore, we discuss the integration and correlation of alerts from any component to build a summarized attack report. The thesis describes in details and experimentally evaluates the proposed IDS and alternative deployments. Acknowledgment: =============== • This PH.D. is achieved through an international joint program with a collaboration between University of Pisa in Italy (Department of Computer Science, Galileo Galilei PH.D. School) and University of Arizona in USA (College of Electrical and Computer Engineering). • The PHD topic is categorized in both Computer Engineering and Information Engineering topics. • The thesis author is also known as "Hisham A. Kholidy"
    corecore