28,219 research outputs found

    A State-of-the-art Integrated Transportation Simulation Platform

    Full text link
    Nowadays, universities and companies have a huge need for simulation and modelling methodologies. In the particular case of traffic and transportation, making physical modifications to the real traffic networks could be highly expensive, dependent on political decisions and could be highly disruptive to the environment. However, while studying a specific domain or problem, analysing a problem through simulation may not be trivial and may need several simulation tools, hence raising interoperability issues. To overcome these problems, we propose an agent-directed transportation simulation platform, through the cloud, by means of services. We intend to use the IEEE standard HLA (High Level Architecture) for simulators interoperability and agents for controlling and coordination. Our motivations are to allow multiresolution analysis of complex domains, to allow experts to collaborate on the analysis of a common problem and to allow co-simulation and synergy of different application domains. This paper will start by presenting some preliminary background concepts to help better understand the scope of this work. After that, the results of a literature review is shown. Finally, the general architecture of a transportation simulation platform is proposed

    Scheduling of fog networks with optimized knapsack by symbiotic organisms search

    Get PDF
    Internet of things as a concept uses wireless sensor networks that have limitations in power, storage, and delay when processing and sending data to the cloud. Fog computing as an extension of cloud services to the edge of the network reduces latency and traffic, so it is very useful in healthcare, wearables, intelligent transportation systems and smart cities. Scheduling is the NP-hard issues in fog computing. Edge devices due to proximity to sensors and clouds are capable of processing power and are beneficial for resource management algorithms. We present a knapsack-based scheduling optimized by symbiotic organisms search that is simulated in iFogsim as a standard simulator for fog computing. The results show improvements in the energy consumption by 18%, total network usage by 1.17%, execution cost by 15%, and sensor lifetime by 5% in our scheduling method are better than the FCFS (First Come First Served) and knapsack algorithms

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service
    • …
    corecore