344 research outputs found

    Novel Proposed Work for Empirical Word Searching in Cloud Environment

    Get PDF
    People's lives have become much more convenient as a result of the development of cloud storage. The third-party server has received a lot of data from many people and businesses for storage. Therefore, it is necessary to ensure that the user's data is protected from prying eyes. In the cloud environment, searchable encryption technology is used to protect user information when retrieving data. The versatility of the scheme is, however, constrained by the fact that the majority of them only offer single-keyword searches and do not permit file changes.A novel empirical multi-keyword search in the cloud environment technique is offered as a solution to these issues. Additionally, it prevents the involvement of a third party in the transaction between data holder and user and guarantees integrity. Our system achieves authenticity at the data storage stage by numbering the files, verifying that the user receives a complete ciphertext. Our technique outperforms previous analogous schemes in terms of security and performance and is resistant to inside keyword guessing attacks.The server cannot detect if the same set of keywords is being looked for by several queries because our system generates randomized search queries. Both the number of keywords in a search query and the number of keywords in an encrypted document can be hidden. Our searchable encryption method is effective and protected from the adaptive chosen keywords threat at the same time

    An Efficient Method for Realizing Contractions of Access Structures in Cloud Storage

    Full text link
    In single-cloud storage, ciphertext-policy attribute-based encryption (CP-ABE) allows one to encrypt any data under an access structure to a cloud server, specifying what attributes are required to decrypt. In multi-cloud storage, a secret sharing scheme (SSS) allows one to split any data into multiple shares, one to a single server, and specify which subset of the servers are able to recover the data. It is an interesting problem to remove some attributes/servers but still enable the remaining attributes/servers in every authorized set to recover the data. The problem is related to the contraction problem of access structures for SSSs. In this paper, we propose a method that can efficiently transform a given SSS for an access structure to SSSs for contractions of the access structure. We show its applications in solving the attribute removal problem in the CP-ABE based single-cloud storage and the data relocating problem in multi-cloud storage. Our method results in solutions that require either less server storage or even no additional server storage.Comment: IEEE Transactions on Services Computin

    Multi-authority attribute-based keyword search over encrypted cloud data

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    CALYPSO: Private Data Management for Decentralized Ledgers

    Get PDF
    Distributed ledgers provide high availability and integrity, making them a key enabler for practical and secure computation of distributed workloads among mutually distrustful parties. Many practical applications also require strong confidentiality, however. This work enhances permissioned and permissionless blockchains with the ability to manage confidential data without forfeiting availability or decentralization. The proposed Calypso architecture addresses two orthogonal challenges confronting modern distributed ledgers: (a) enabling the auditable management of secrets and (b) protecting distributed computations against arbitrage attacks when their results depend on the ordering and secrecy of inputs. Calypso introduces on-chain secrets, a novel abstraction that enforces atomic deposition of an auditable trace whenever users access confidential data. Calypso provides user-controlled consent management that ensures revocation atomicity and accountable anonymity. To enable permissionless deployment, we introduce an incentive scheme and provide users with the option to select their preferred trustees. We evaluated our Calypso prototype with a confidential document-sharing application and a decentralized lottery. Our benchmarks show that transaction-processing latency increases linearly in terms of security (number of trustees) and is in the range of 0.2 to 8 seconds for 16 to 128 trustees

    Disentangling encryption from the personalization debate: On the advisability of endorsing the “relativist approach” underpinning the identifiability criterion

    Get PDF
    The great confusion about encryption, cornerstone concept of data security, may jeopardise a proper taxonomy in order to legally qualify data. Through a technical and legal literature review, this paper firstly aims to shed the light on the nature of encryption. Having set the context, the study investigates whether and to what extent the so-called relativist understanding of Recital 26 GDPR is desirable. It considers the effort required to identify the data subject only by the data controller: in the context of cryptography, GDPR’s regime would be applicable if a data controller is able to decrypt a data set or, at least, has reasonable possibilities of doing so. The legal analysis, integrated with technical aspects, addresses the case of polymorphic encryption as an argument in favour of the relativist approach in the post-Breyer era: if cryptographic means have been strong enough so that identification is no longer reasonably likely, such data would be effectively non-personal data. The advisability of such outcome will be critically discussed in the light of recent business trends, where big corporations are increasingly investing in business models aiming at removing from the equation personal data
    • …
    corecore