186 research outputs found

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    Securing Cloud from Tampering and Duplication

    Get PDF
    Cloud computing is the most emerging technology today which is used by most of the social media sites to store the data. The data stored on the cloud is private data of the user so it must not be tampered by other entities. The previous system has worked on reducing the storage space by copying and archiving data but on the cost of reduced performance rate. We propose a system to enhance the storage space by performing deduplication on data and shuffling the data,between the number of directories within cloud after particular interval of time to avoid the tracking of data to enhance the security. The backup of the data will be taken timely into the back up directory. The proposed system will provide ease to use the cloud

    Block-level De-duplication with Encrypted Data

    Get PDF
    Deduplication is a storage saving technique which has been adopted by many cloud storage providers such as Dropbox. The simple principle of deduplication is that duplicate data uploaded by different users are stored only once. Unfortunately, deduplication is not compatible with encryption. As a scheme that allows deduplication of encrypted data segments, we propose ClouDedup, a secure and efficient storage service which guarantees blocklevel deduplication and data confidentiality at the same time. ClouDedup strengthens convergent encryption by employing a component that implements an additional encryption operation and an access control mechanism. We also propose to introduce an additional component which is in charge of providing a key management system for data blocks together with the actual deduplication operation. We show that the overhead introduced by these new components is minimal and does not impact the overall storage and computational costs

    What if keys are leaked? Towards practical and secure re-encryption in deduplication-based cloud storage

    Get PDF
    By only storing a unique copy of duplicate data possessed by different data owners, deduplication can significantly reduce storage cost, and hence is used broadly in public clouds. When combining with confidentiality, deduplication will become problematic as encryption performed by different data owners may differentiate identical data which may then become not deduplicable. The Message-Locked Encryption (MLE) is thus utilized to derive the same encryption key for the identical data, by which the encrypted data are still deduplicable after being encrypted by different data owners. As keys may be leaked over time, re-encrypting outsourced data is of paramount importance to ensure continuous confidentiality, which, however, has not been well addressed in the literature. In this paper, we design SEDER, a SEcure client-side Deduplication system enabling Efficient Re-encryption for cloud storage by (1) leveraging all-or-nothing transform (AONT), (2) designing a new delegated re-encryption (DRE), and (3) proposing a new proof of ownership scheme for encrypted cloud data (PoWC). Security analysis and experimental evaluation validate security and efficiency of SEDER, respectively

    Survey on securing data storage in the cloud

    Get PDF
    Cloud Computing has become a well-known primitive nowadays; many researchers and companies are embracing this fascinating technology with feverish haste. In the meantime, security and privacy challenges are brought forward while the number of cloud storage user increases expeditiously. In this work, we conduct an in-depth survey on recent research activities of cloud storage security in association with cloud computing. After an overview of the cloud storage system and its security problem, we focus on the key security requirement triad, i.e., data integrity, data confidentiality, and availability. For each of the three security objectives, we discuss the new unique challenges faced by the cloud storage services, summarize key issues discussed in the current literature, examine, and compare the existing and emerging approaches proposed to meet those new challenges, and point out possible extensions and futuristic research opportunities. The goal of our paper is to provide a state-of-the-art knowledge to new researchers who would like to join this exciting new field

    Analysis of outsourcing data to the cloud using autonomous key generation

    Get PDF
    Cloud computing, a technology that enables users to store and manage their data at a low cost and high availability, has been emerging for the past few decades because of the many services it provides. One of the many services cloud computing provides to its users is data storage. The majority of the users of this service are still concerned to outsource their data due to the integrity and confidentiality issues, as well as performance and cost issues, that come along with it. These issues make it necessary to encrypt data prior to outsourcing it to the cloud. However, encrypting data prior to outsourcing makes searching the data obsolete, lowering the functionality of the cloud. Most existing cloud storage schemes often prioritize security over performance and functionality, or vice versa. In this thesis, the cloud storage service is explored, and the aspects of security, performance, and functionality are analyzed in order to investigate the trade-offs of the service. DSB-SEIS, a scheme with encryption intensity selection, an autonomous key generation algorithm that allows users to control the encryption intensity of their files, as well as other features is developed in order to find a balance between performance, security, and functionality. The features that DSB-SEIS contains are deduplication, assured deletion, and searchable encryption. The effect of encryption intensity selection on encryption, decryption, and key generation is explored, and the performance and security of DSB-SEIS are evaluated. The MapReduce framework is also used to investigate the DSB-SEIS algorithm performance with big data. Analysis demonstrates that the encryption intensity selection algorithm generates a manageable number of encryption keys based on the confidentiality of data while not adding significant overhead on encryption or decryption --Abstract, page iii

    Tailoring the Cyber Security Framework: How to Overcome the Complexities of Secure Live Virtual Machine Migration in Cloud Computing

    Get PDF
    This paper proposes a novel secure live virtual machine migration framework by using a virtual trusted platform module instance to improve the integrity of the migration process from one virtual machine to another on the same platform. The proposed framework, called Kororā, is designed and developed on a public infrastructure-as-a-service cloud-computing environment and runs concurrently on the same hardware components (Input/Output, Central Processing Unit, Memory) and the same hypervisor (Xen); however, a combination of parameters needs to be evaluated before implementing Kororā. The implementation of Kororā is not practically feasible in traditional distributed computing environments. It requires fixed resources with high-performance capabilities, connected through a high-speed, reliable network. The following research objectives were determined to identify the integrity features of live virtual machine migration in the cloud system: To understand the security issues associated with cloud computing, virtual trusted platform modules, virtualization, live virtual machine migration, and hypervisors; To identify the requirements for the proposed framework, including those related to live VM migration among different hypervisors; To design and validate the model, processes, and architectural features of the proposed framework; To propose and implement an end-to-end security architectural blueprint for cloud environments, providing an integrated view of protection mechanisms, and then to validate the proposed framework to improve the integrity of live VM migration. This is followed by a comprehensive review of the evaluation system architecture and the proposed framework state machine. The overarching aim of this paper, therefore, is to present a detailed analysis of the cloud computing security problem, from the perspective of cloud architectures and the cloud service delivery models. Based on this analysis, this study derives a detailed specification of the cloud live virtual machine migration integrity problem and key features that should be covered by the proposed framewor

    An effective, secure and efficient tagging method for integrity protection of outsourced data in a public cloud storage

    Get PDF
    Data Integrity Auditing (DIA) is a security service for checking the integrity of data stored in a PCS (Public Cloud Storage), a third-party based storage service. A DIA service is provided by using integrity tags (hereafter referred to tags). This paper proposes a novel tagging method, called Tagging of Outsourced Data (TOD), for generating and verifying tags of files. TOD has a number of unique properties: (i) it supports both public and private verifiability, and achieves this property with a low level of overhead at the user end, making it particularly attractive to mobile users with resource-constrained devices, (ii) it protects data confidentiality, supports dynamic tags and is resilient against tag forgery and tag tampering (i.e. by authorised insiders) at the same time in more secure and efficient, making the method more suited to the PCS environment, (iii) it supports tags deduplication, making it more efficient, particularly for the user who has many files with data redundancy. Comprehensive security analysis and performance evaluation have been conducted to demonstrate the efficacy and efficiency of the approach taken in the design
    corecore