9,040 research outputs found

    Distributed Feature Extraction Using Cloud Computing Resources

    Get PDF
    The need to expand the computational resources in a massive surveillance network is clear but traditional means of purchasing new equipment for short-term tasks every year is wasteful. In this work I will provide evidence in support of utilizing a cloud computing infrastructure to perform computationally intensive feature extraction tasks on data streams. Efficient off-loading of computational tasks to cloud resources will require a minimization of the time needed to expand the cloud resources, an efficient model of communication and a study of the interplay between the in-network computational resources and remote resources in the cloud. This report provides strong evidence that the use of cloud computing resources in a near real-time distributed sensor network surveillance system, ASAP, is feasible. A face detection web service operating on an Amazon EC2 instance is shown to provide processing of 10-15 frames per second.Umakishore Ramachandran - Faculty Mentor ; Rajnish Kumar - Committee Member/Second Reade

    "What is an 'Artificial Intelligence Arms Race' Anyway?"

    Get PDF

    Hard-Real-Time Computing Performance in a Cloud Environment

    Get PDF
    The United States Department of Defense (DoD) is rapidly working with DoD Services to move from multi-year (e.g., 7-10) traditional acquisition programs to a commercial industrybased approach for software development. While commercial technologies and approaches provide an opportunity for rapid fielding of mission capabilities to pace threats, the suitability of commercial technologies to meet hard-real-time requirements within a surface combat system is unclear. This research establishes technical data to validate the effectiveness and suitability of current commercial technologies to meet the hard-real-time demands of a DoD combat management system. (Moreland Jr., 2013) conducted similar research; however, microservices, containers, and container orchestration technologies were not on the DoD radar at the time. Updated knowledge in this area will inform future DoD roadmaps and investments. A mission-based approach using Mission Engineering will be used to set the context for applied research. A hypothetical yet operationally relevant Strait Transit scenario has been established to provide context for definition of experimental parameters to be set while assessing the hypothesis. System models federated to form a system-of-systems architecture and data from a cloud computing environment are used to collect data for quantitative analysis
    • …
    corecore