81,371 research outputs found

    Cloud Computing and Big Data for Oil and Gas Industry Application in China

    Get PDF
    The oil and gas industry is a complex data-driven industry with compute-intensive, data-intensive and business-intensive features. Cloud computing and big data have a broad application prospect in the oil and gas industry. This research aims to highlight the cloud computing and big data issues and challenges from the informatization in oil and gas industry. In this paper, the distributed cloud storage architecture and its applications for seismic data of oil and gas industry are focused on first. Then,cloud desktop for oil and gas industry applications are also introduced in terms of efficiency, security and usability. Finally, big data architecture and security issues of oil and gas industry are analyzed. Cloud computing and big data architectures have advantages in many aspects, such as system scalability, reliability, and serviceability. This paper also provides a brief description for the future development of Cloud computing and big data in oil and gas industry. Cloud computing and big data can provide convenient information sharing and high quality service for oil and gas industry

    Chiminey: Reliable Computing and Data Management Platform in the Cloud

    Full text link
    The enabling of scientific experiments that are embarrassingly parallel, long running and data-intensive into a cloud-based execution environment is a desirable, though complex undertaking for many researchers. The management of such virtual environments is cumbersome and not necessarily within the core skill set for scientists and engineers. We present here Chiminey, a software platform that enables researchers to (i) run applications on both traditional high-performance computing and cloud-based computing infrastructures, (ii) handle failure during execution, (iii) curate and visualise execution outputs, (iv) share such data with collaborators or the public, and (v) search for publicly available data.Comment: Preprint, ICSE 201

    Hadoop Based Data Intensive Computation on IAAS Cloud Platforms

    Get PDF
    Cloud computing is a relatively new form of computing which uses virtualized resources. It is dynamically scalable and is often provided as pay for use service over the Internet or Intranet or both. With increasing demand for data storage in the cloud, the study of data-intensive applications is becoming a primary focus. Data intensive applications are those which involve high CPU usage, processing large volumes of data typically in size of hundreds of gigabytes, terabytes or petabytes. The research in this thesis is focused on the Amazon’s Elastic Cloud Compute (EC2) and Amazon Elastic Map Reduce (EMR) using HiBench Hadoop Benchmark suite. HiBench is a Hadoop benchmark suite and is used for performing and evaluating Hadoop based data intensive computation on both these cloud platforms. Both quantitative and qualitative comparisons of Amazon EC2 and Amazon EMR are presented. Also presented are their pricing models and suggestions for future research

    A proactive fault tolerance framework for high performance computing (HPC) systems in the cloud

    Get PDF
    High Performance Computing (HPC) systems have been widely used by scientists and researchers in both industry and university laboratories to solve advanced computation problems. Most advanced computation problems are either data-intensive or computation-intensive. They may take hours, days or even weeks to complete execution. For example, some of the traditional HPC systems computations run on 100,000 processors for weeks. Consequently traditional HPC systems often require huge capital investments. As a result, scientists and researchers sometimes have to wait in long queues to access shared, expensive HPC systems. Cloud computing, on the other hand, offers new computing paradigms, capacity, and flexible solutions for both business and HPC applications. Some of the computation-intensive applications that are usually executed in traditional HPC systems can now be executed in the cloud. Cloud computing price model eliminates huge capital investments. However, even for cloud-based HPC systems, fault tolerance is still an issue of growing concern. The large number of virtual machines and electronic components, as well as software complexity and overall system reliability, availability and serviceability (RAS), are factors with which HPC systems in the cloud must contend. The reactive fault tolerance approach of checkpoint/restart, which is commonly used in HPC systems, does not scale well in the cloud due to resource sharing and distributed systems networks. Hence, the need for reliable fault tolerant HPC systems is even greater in a cloud environment. In this thesis we present a proactive fault tolerance approach to HPC systems in the cloud to reduce the wall-clock execution time, as well as dollar cost, in the presence of hardware failure. We have developed a generic fault tolerance algorithm for HPC systems in the cloud. We have further developed a cost model for executing computation-intensive applications on HPC systems in the cloud. Our experimental results obtained from a real cloud execution environment show that the wall-clock execution time and cost of running computation-intensive applications in the cloud can be considerably reduced compared to checkpoint and redundancy techniques used in traditional HPC systems

    Performance Evaluation of Data-Intensive Computing Applications on a Public IaaS Cloud

    Get PDF
    [Abstract] The advent of cloud computing technologies, which dynamically provide on-demand access to computational resources over the Internet, is offering new possibilities to many scientists and researchers. Nowadays, Infrastructure as a Service (IaaS) cloud providers can offset the increasing processing requirements of data-intensive computing applications, becoming an emerging alternative to traditional servers and clusters. In this paper, a comprehensive study of the leading public IaaS cloud platform, Amazon EC2, has been conducted in order to assess its suitability for data-intensive computing. One of the key contributions of this work is the analysis of the storage-optimized family of EC2 instances. Furthermore, this study presents a detailed analysis of both performance and cost metrics. More specifically, multiple experiments have been carried out to analyze the full I/O software stack, ranging from the low-level storage devices and cluster file systems up to real-world applications using representative data-intensive parallel codes and MapReduce-based workloads. The analysis of the experimental results has shown that data-intensive applications can benefit from tailored EC2-based virtual clusters, enabling users to obtain the highest performance and cost-effectiveness in the cloud.Ministerio de Economía y Competitividad; TIN2013-42148-PGalicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2013/055Ministerio de Educación y Ciencia; AP2010-434

    Addressing Application Latency Requirements through Edge Scheduling

    Get PDF
    Abstract Latency-sensitive and data-intensive applications, such as IoT or mobile services, are leveraged by Edge computing, which extends the cloud ecosystem with distributed computational resources in proximity to data providers and consumers. This brings significant benefits in terms of lower latency and higher bandwidth. However, by definition, edge computing has limited resources with respect to cloud counterparts; thus, there exists a trade-off between proximity to users and resource utilization. Moreover, service availability is a significant concern at the edge of the network, where extensive support systems as in cloud data centers are not usually present. To overcome these limitations, we propose a score-based edge service scheduling algorithm that evaluates network, compute, and reliability capabilities of edge nodes. The algorithm outputs the maximum scoring mapping between resources and services with regard to four critical aspects of service quality. Our simulation-based experiments on live video streaming services demonstrate significant improvements in both network delay and service time. Moreover, we compare edge computing with cloud computing and content delivery networks within the context of latency-sensitive and data-intensive applications. The results suggest that our edge-based scheduling algorithm is a viable solution for high service quality and responsiveness in deploying such applications

    Resource allocation in mobile edge cloud computing for data-intensive applications

    Get PDF
    Rapid advancement in the mobile telecommunications industry has motivated the development of mobile applications in a wide range of social and scientific domains. However, mobile computing (MC) platforms still have several constraints, such as limited computation resources, short battery life and high sensitivity to network capabilities. In order to overcome the limitations of mobile computing and benefit from the huge advancement in mobile telecommunications and the rapid revolution of distributed resources, mobile-aware computing models, such as mobile cloud computing (MCC) and mobile edge computing (MEC) have been proposed. The main problem is to decide on an application execution plan while satisfying quality of service (QoS) requirements and the current status of system networking and device energy. However, the role of application data in offloading optimisation has not been studied thoroughly, particularly with respect to how data size and distribution impact application offloading. This problem can be referred to as data-intensive mobile application offloading optimisation. To address this problem, this thesis presents novel optimisation frameworks, techniques and algorithms for mobile application resource allocation in mobile-aware computing environments. These frameworks and techniques are proposed to provide optimised solutions to schedule data intensive mobile applications. Experimental results show the ability of the proposed tools in optimising the scheduling and the execution of data intensive applications on various computing environments to meet application QoS requirements. Furthermore, the results clearly stated the significant contribution of the data size parameter on scheduling the execution of mobile applications. In addition, the thesis provides an analytical investigation of mobile-aware computing environments for a certain mobile application type. The investigation provides performance analysis to help users decide on target computation resources based on application structure, input data, and mobile network status
    corecore