1,550 research outputs found

    A Political Theory of Engineered Systems and A Study of Engineering and Justice Workshops

    Get PDF
    Since there are good reasons to think that some engineered systems are socially undesirable—for example, internal combustion engines that cause climate change, algorithms that are racist, and nuclear weapons that can destroy all life—there is a well-established literature that attempts to identify best practices for designing and regulating engineered systems in order to prevent harm and promote justice. Most of this literature, especially the design theory and engineering justice literature meant to help guide engineers, focuses on environmental, physical, social, and mental harms such as ecosystem and bodily poisoning, racial and gender discrimination, and urban alienation. However, the literature that focuses on how engineered systems can produce political harms—harms to how we shape the way we live in community together—is not well established. The first part of this thesis contributes to identifying how particular types of engineered systems can harm a democratic politics. Building on democratic theory, philosophy of collective harms, and design theory, it argues that engineered systems that extend in space and time beyond a certain threshold subvert the knowledge and empowerment necessary for a democratic politics. For example, the systems of global shipping and the internet that fundamentally shape our lives are so large that people cannot attain the knowledge necessary to regulate them well nor the empowerment necessary to shape them. The second part of this thesis is an empirical study of a workshop designed to encourage engineering undergraduates to understand how engineered systems can subvert a democratic politics, with the ultimate goal of supporting students in incorporating that understanding into their work. 32 Dartmouth undergraduate engineering students participated in the study. Half were assigned to participate in a workshop group, half to a control group. The workshop group participants took a pretest; then participated in a 3-hour, semi-structured workshop with 4 participants per session (as well as a discussion leader and note-taker) over lunch or dinner; and then took a posttest. The control group participants took the same pre- and post- tests, but had no suggested activity in the intervening 3 hours. We find that the students who participated in workshops had a statistically significant test-score improvement as compared to the control group (Brunner-Munzel test, p \u3c .001). Using thematic analysis methods, we show the data is consistent with the hypothesis that workshops produced a score improvement because of certain structure (small size, long duration, discussion-based, over homemade food) and content (theoretically rich, challenging). Thematic analysis also reveals workshop failures and areas for improvement (too much content for the duration, not well enough organized). The thesis concludes with a discussion of limitations and suggestions for future theoretical, empirical, and pedagogical research

    Urban building energy performance prediction and retrofit analysis using data-driven machine learning approach

    Get PDF
    Stakeholders such as urban planners and energy policymakers use building energy performance modeling and analysis to develop strategic sustainable energy plans with the aim of reducing energy consumption and emissions from the built environment. However, inconsistent energy data and the lack of scalable building models create a gap between building energy modeling and traditional planning practices. An alternative approach is to conduct a large-scale energy usage survey, which is time-consuming. Similarly, existing studies rely on traditional machine learning or statistical approaches for calculating large-scale energy performance. This paper proposes a solution that employs a data-driven machine learning approach to predict the energy performance of urban residential buildings, using both ensemble-based machine learning and end-use demand segregation methods. The proposed methodology consists of five steps: data collection, archetype development, physics-based parametric modeling, machine learning modeling, and urban building energy performance analysis. The devised methodology is tested on the Irish residential building stock and generates a synthetic building dataset of one million buildings through the parametric modeling of 19 identified vital variables for four residential building archetypes. As a part of the machine learning modeling process, the study implemented an end-use demand segregation method, including heating, lighting, equipment, photovoltaic, and hot water, to predict the energy performance of buildings at an urban scale. Furthermore, the model's performance is enhanced by employing an ensemble-based machine learning approach, achieving 91% accuracy compared to the traditional approach's 76%. Accurate prediction of building energy performance enables stakeholders, including energy policymakers and urban planners, to make informed decisions when planning large-scale retrofit measures

    Proceedings of the 10th International congress on architectural technology (ICAT 2024): architectural technology transformation.

    Get PDF
    The profession of architectural technology is influential in the transformation of the built environment regionally, nationally, and internationally. The congress provides a platform for industry, educators, researchers, and the next generation of built environment students and professionals to showcase where their influence is transforming the built environment through novel ideas, businesses, leadership, innovation, digital transformation, research and development, and sustainable forward-thinking technological and construction assembly design

    Optimising heating and cooling of smart buildings

    Get PDF
    This thesis is concerned with optimization techniques to improve the efficiency of heating and cooling of both existing and new buildings. We focus on the thermal demand-side and we make novel contributions to the optimality of both design and operational questions. We demonstrate that our four novel contributions can reduce operations cost and consumption, optimize retrofit and estimate relevant parameters of the built environment. The ultimate objective of this work is to provide affordable and cost-effective solutions that take advantage of local existing resources. This work addresses four gaps in the state-of-the-art. First, we contribute to current building practice that is mostly based on human experience and simulations, which often leads to oversized heating systems and low efficiency. The results in this thesis show the advantages of using optimization approaches for thermal aspects in buildings. We propose models that seek optimal decisions for one specific design day, as well as an approach that optimizes multiple day-scenarios to more accurately represent a whole year. Second, we study the full potential of buildings’ thermal mass and design. This has not been fully explored due to two factors: the complexity of the mathematics involved, and the fast developing and variety of emerging technologies and approaches. We tackle the mathematical challenge by solving non-linear non-convex models with integer decisions and by estimating building’s thermal mass. We support rapid architectural development by studying flexible models able to adapt to the latest building technologies such as passive house design, smart façades, and dynamic shadings. Third, we consider flexibility provision to significantly reduce total energy costs. Flexibility studies often only focus on flexible building loads but do not consider heating, which is often the largest load of a building and is less flexible. Because of that, we study and model a building’s heating demand and we propose optimization techniques to support greater flexibility of heating loads, allowing buildings to participate more efficiently in providing demand response. Fourth, we consider a building as an integrated system, unlike many other modelling approaches that focus on single aspects. We model a building as a complex system comprising the building’s structure, weather conditions and users’ requirements. Furthermore, we account for design decisions and for new and emerging technologies, such as heat pumps and thermal storage. Optimal decisions come from the joint analysis of all these interconnected factors. The thesis is structured in three parts: the introduction, the main body and the conclusions. The main body is made by five chapters, each of which focuses on one research project and has the following structure: overview, introduction, literature review, mathematical framework description, application and results section, conclusion and future works. The first two chapters discuss the optimization of operational aspects. The first focuses on a single thermal zone and the second in two connected ones. The third chapter is a continuation of the first two, and presents an approach to optimize both operations and design of buildings in a heat community. This approach integrates the use of an energy software already in the market. The fourth chapter discusses an approach to find the optimal refurbishment of an existing building at minimum cost. The fifth chapter shows an inferring model to represent a house of a building stock. We study the common case where the house’s data is lacking or inaccurate, and we present a model that is able to estimate the required thermal parameters for modelling the house using only heating demand

    Integrated Approaches to Digital-enabled Design for Manufacture and Assembly: A Modularity Perspective and Case Study of Huoshenshan Hospital in Wuhan, China

    Get PDF
    Countries are trying to expand their healthcare capacity through advanced construction, modular innovation, digital technologies and integrated design approaches such as Design for Manufacture and Assembly (DfMA). Within the context of China, there is a need for stronger implementation of digital technologies and DfMA, as well as a knowledge gap regarding how digital-enabled DfMA is implemented. More critically, an integrated approach is needed in addition to DfMA guidelines and digital-enabled approaches. For this research, a mixed method was used. Questionnaires defined the context of Huoshenshan Hospital, namely the healthcare construction in China. Then, Huoshenshan Hospital provided a case study of the first emergency hospital which addressed the uncertainty of COVID-19. This extreme project, a 1,000-bed hospital built in 10 days, implemented DfMA in healthcare construction and provides an opportunity to examine the use of modularity. A workshop with a design institution provided basic facts and insight into past practice and was followed by interviews with 18 designers, from various design disciplines, who were involved in the project. Finally, multiple archival materials were used as secondary data sources. It was found that complexity hinders building systems integration, while reinforcement relationships between multiple dimensions of modularity (across organisation-process-product-supply chain dimensions) are the underlying mechanism that allows for the reduction of complexity and the integration of building systems. Promoting integrated approaches to DfMA relies on adjusting and coupling multi-dimensional modular reinforcement relationships (namely, relationships of modular alignment, modular complement, and modular incentive). Thus, the building systems integrator can use these three approaches to increase the success of digital-enabled DfMA

    SUTMS - Unified Threat Management Framework for Home Networks

    Get PDF
    Home networks were initially designed for web browsing and non-business critical applications. As infrastructure improved, internet broadband costs decreased, and home internet usage transferred to e-commerce and business-critical applications. Today’s home computers host personnel identifiable information and financial data and act as a bridge to corporate networks via remote access technologies like VPN. The expansion of remote work and the transition to cloud computing have broadened the attack surface for potential threats. Home networks have become the extension of critical networks and services, hackers can get access to corporate data by compromising devices attacked to broad- band routers. All these challenges depict the importance of home-based Unified Threat Management (UTM) systems. There is a need of unified threat management framework that is developed specifically for home and small networks to address emerging security challenges. In this research, the proposed Smart Unified Threat Management (SUTMS) framework serves as a comprehensive solution for implementing home network security, incorporating firewall, anti-bot, intrusion detection, and anomaly detection engines into a unified system. SUTMS is able to provide 99.99% accuracy with 56.83% memory improvements. IPS stands out as the most resource-intensive UTM service, SUTMS successfully reduces the performance overhead of IDS by integrating it with the flow detection mod- ule. The artifact employs flow analysis to identify network anomalies and categorizes encrypted traffic according to its abnormalities. SUTMS can be scaled by introducing optional functions, i.e., routing and smart logging (utilizing Apriori algorithms). The research also tackles one of the limitations identified by SUTMS through the introduction of a second artifact called Secure Centralized Management System (SCMS). SCMS is a lightweight asset management platform with built-in security intelligence that can seamlessly integrate with a cloud for real-time updates

    Artificial Intelligence in the Construction Industry: A Systematic Review of the Entire Construction Value Chain Lifecycle

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/In recent years, there has been a surge in the global digitization of corporate processes and concepts such as digital technology development which is growing at such a quick pace that the construction industry is struggling to catch up with latest developments. A formidable digital technology, artificial intelligence (AI), is recognized as an essential element within the paradigm of digital transformation, having been widely adopted across different industries. Also, AI is anticipated to open a slew of new possibilities for how construction projects are designed and built. To obtain a better knowledge of the trend and trajectory of research concerning AI technology application in the construction industry, this research presents an exhaustive systematic review of seventy articles toward AI applicability to the entire lifecycle of the construction value chain identified via the guidelines outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The review’s findings show foremostly that AI technologies are mostly used in facility management, creating a huge opportunity for the industry to profit by allowing facility managers to take proactive action. Secondly, it shows the potential for design expansion as a key benefit according to most of the selected literature. Finally, it found data augmentation as one of the quickest prospects for technical improvement. This knowledge will assist construction companies across the world in recognizing the efficiency and productivity advantages that AI technologies can provide while helping them make smarter technology investment decisions.Peer reviewe

    Optimisation for Optical Data Centre Switching and Networking with Artificial Intelligence

    Get PDF
    Cloud and cluster computing platforms have become standard across almost every domain of business, and their scale quickly approaches O(106)\mathbf{O}(10^6) servers in a single warehouse. However, the tier-based opto-electronically packet switched network infrastructure that is standard across these systems gives way to several scalability bottlenecks including resource fragmentation and high energy requirements. Experimental results show that optical circuit switched networks pose a promising alternative that could avoid these. However, optimality challenges are encountered at realistic commercial scales. Where exhaustive optimisation techniques are not applicable for problems at the scale of Cloud-scale computer networks, and expert-designed heuristics are performance-limited and typically biased in their design, artificial intelligence can discover more scalable and better performing optimisation strategies. This thesis demonstrates these benefits through experimental and theoretical work spanning all of component, system and commercial optimisation problems which stand in the way of practical Cloud-scale computer network systems. Firstly, optical components are optimised to gate in ≈500ps\approx 500 ps and are demonstrated in a proof-of-concept switching architecture for optical data centres with better wavelength and component scalability than previous demonstrations. Secondly, network-aware resource allocation schemes for optically composable data centres are learnt end-to-end with deep reinforcement learning and graph neural networks, where 3×3\times less networking resources are required to achieve the same resource efficiency compared to conventional methods. Finally, a deep reinforcement learning based method for optimising PID-control parameters is presented which generates tailored parameters for unseen devices in O(10−3)s\mathbf{O}(10^{-3}) s. This method is demonstrated on a market leading optical switching product based on piezoelectric actuation, where switching speed is improved >20%>20\% with no compromise to optical loss and the manufacturing yield of actuators is improved. This method was licensed to and integrated within the manufacturing pipeline of this company. As such, crucial public and private infrastructure utilising these products will benefit from this work
    • …
    corecore