8,032 research outputs found

    Advances on Network Protocols and Algorithms for Vehicular Ad Hoc Networks

    Full text link
    Vehicular Ad Hoc Network (VANET) is an emerging area of wireless ad hoc networks that facilitates ubiquitous connectivity between smart vehicles through Vehicle-to-Vehicle (V2V) or Vehicle-to-Roadside (V2R) and Roadside-to- Vehicle (R2V) communications. This emerging field of technology aims to improve safety of passengers and traffic flow, reduces pollution to the environment and enables in-vehicle entertainment applications. The safety-related applications could reduce accidents by providing drivers with traffic information such as collision avoidances, traffic flow alarms and road surface conditions. Moreover, the passengers could exploit an available infrastructure in order to connect to the internet for infomobility and entertainment applications.Lloret, J.; Ghafoor, KZ.; Rawat, DB.; Xia, F. (2013). Advances on Network Protocols and Algorithms for Vehicular Ad Hoc Networks. Mobile Networks and Applications. 18(6):749-754. doi:10.1007/s11036-013-0490-7S749754186Lloret J, Canovas A, Catalá A, Garcia M (2013) Group-based protocol and mobility model for VANETs to offer internet access. J Netw Comput Appl 36(3):1027–1038. doi: 10.1016/j.jnca.2012.02.009Khokhar RH, Zia T, Ghafoor KZ, Lloret J, Shiraz M (2013) Realistic and efficient radio propagation model for V2X communications. KSII Trans Internet Inform Syst 7(8):1933–1953. doi: 10.3837/tiis.2013.08.011Ghafoor KZ (2013) Routing protocols in vehicular ad hoc networks: survey and research challenges, Netw Protocol Algorithm 5(4). doi: 10.5296/npa.v5i4.4134Ghafoor KZ, Bakar KA, Lloret J, Ke C-H, Lee KC (2013) Intelligent beaconless geographical routing for urban vehicular environments. Wirel Netw 19(3):345–362. doi: 10.1007/s11276-012-0470-zGhafoor KZ, Bakar KA, Lee K, AL-Hashimi H (2010) A novel delay- and reliability- aware inter-vehicle routing protocol. Netw Protocol Algorithms 2(2):66–88. doi: 10.5296/npa.v2i2.427Dias JAFF, Rodrigues JJPC, Isento JN, Pereira PRBA, Lloret J (2011) Performance assessment of fragmentation mechanisms for vehicular delay-tolerant networks. EURASIP J Wirel Commun Netw 2011(195):1–14. doi: 10.1186/1687-1499-2011-195Zhang D, Yang Z, Raychoudhury V, Chen Z, Lloret J (2013) An energy-efficient routing protocol using movement trend in vehicular Ad-hoc networks. Comput J 58(8):938–946. doi: 10.1093/comjnl/bxt028Ghafoor KZ, Lloret J, Bakar KA, Sadiq AS, Mussa SAB (2013) Beaconing approaches in vehicular Ad Hoc networks: a survey. Wirel Pers Commun. doi: 10.1007/s11277-013-1222-9Sadiq AS, Bakar KA, Ghafoor KZ, Lloret J (2013) An intelligent vertical handover scheme for audio and video streaming in heterogeneous vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0465-8Khamayseh YM (2013) Network size estimation in VANETs. Netw Protocol Algorithm 5(3):136–152. doi: 10.5296/npa.v5i6.3838Rawat DB, Popescu DC, Yan G, Olariu S (2011) Enhancing VANET performance by joint adaptation of transmission power and contention window size. IEEE Trans Parallel Distrib Syst 22(9):1528–1535Yan G, Rawat DB, Bista BB. Provisioning vehicular ad hoc networks with quality of services. Int J Space-Based Situated Comput 2(2):104–111Rawat DB, Bista BB, Yan G, Weigle MC (2011) Securing vehicular ad-hoc networks against malicious drivers: a probabilistic approach, International Conference on Complex, Intelligent, and Software Intensive Systems Pp. 146–151. June 30, 2011Sun W, Xia F, Ma J, Fu T, Sun Y. An optimal ODAM-based broadcast algorithm for vehicular Ad-Hoc Networks. KSII Trans Internet Inform Syst 6(12): 3257–3274Vinel AV, Dudin AN, Andreev SD, Xia F (2010) Performance modeling methodology of emergency dissemination algorithms for vehicular ad-hoc networks, 6th Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), Pp. 397–400AL-Hashimi HN, Bakar KA, Ghafoor KZ (2010) Inter-domain proxy mobile IPv6 based vehicular network. Netw Protocol Algorithm 2(4):1–15. doi: 10.5296/npa.v2i4.488Ghafoor KZ, Bakar KA, Mohammed MA, Lloret J (2013) Vehicular cloud computing: trends and challenges, in the book “mobile computing over cloud: technologies, services, and applications”. IGI GlobalYan G, Rawat DB, Bista BB (2012) Towards secure vehicular clouds, Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS 2012), Pp. 370–375Fernández H, Rubio L, Reig J, Rodrigo-Peñarrocha VM, Valero A (2013) Path loss modeling for vehicular system performance and communication protocols evaluation. Mobile Netw Appl. doi: 10.1007/s11036-013-0463-xAllouche Y, Segal M (2013) A cluster-based beaconing approach in VANETs: near optimal topology via proximity information. Mobile Netw Appl. doi: 10.1007/s11036-013-0468-5Merah AF, Samarah S, Boukerche A, Mammeri A (2013) A sequential patterns data mining approach towards vehicular route prediction in VANETs. Mobile Netw Appl. doi: 10.1007/s11036-013-0459-6Zhang D, Huang H, Zhou J, Xia F, Chen Z (2013) Detecting hot road mobility of vehicular Ad Hoc Networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0467-6El Ajaltouni H, Boukerche A, Mammeri A (2013) A multichannel QoS MAC with dynamic transmit opportunity for. Mobile Netw Appl. doi: 10.1007/s11036-013-0475-6Reñé S, Esparza O, Alins J, Mata-Díaz J, Muñoz JL (2013) VSPLIT: a cross-layer architecture for V2I TCP services over. Mobile Netw Appl. doi: 10.1007/s11036-013-0473-8Blanco B, Liberal F (2013) Amaia Aguirregoitia, application of cognitive techniques to adaptive routing for VANETs in city environments. Mobile Netw Appl. doi: 10.1007/s11036-013-0466-7Kim J, Krunz M (2013) Spectrum-aware beaconless geographical routing protocol for cognitive radio enabled vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0476-5Dias JAFF, Rodrigues JJPC, Isento JNG, Niu J (2013) The impact of cooperative nodes on the performance of vehicular delay-tolerant networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0464-9Sadiq AS, Bakar KA, Ghafoor KZ, Lloret J, Khokhar R (2013) An intelligent vertical handover scheme for audio and video streaming in heterogeneous vehicular networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0465-8Machado S, Ozón J, González AJ, Ghafoor KZ (2013) Structured peer-to-peer real time video transmission over vehicular Ad Hoc networks. Mobile Netw Appl. doi: 10.1007/s11036-013-0461-zLin C, Wu G, Xia F, Yao L (2013) Enhance the attacking efficiency of the node compromise attack in vehicular Ad-hoc network using connected dominating set. Mobile Netw Appl. doi: 10.1007/s11036-013-0469-

    Exploring intelligent service migration in vehicular networks

    Get PDF
    Mobile edge clouds have great potential to address the challenges in vehicular networks by transferring storage and computing functions to the cloud. This brings many advantages of the cloud closer to the mobile user, by installing small cloud infrastructures at the network edge. However, it is still a challenge to efficiently utilize heterogeneous communication and edge computing architectures. In this paper, we investigate the impact of live service migration within a Vehicular Ad-hoc Network environment by making use of the results collected from a real experimental test-bed. A new proactive service migration model which considers both the mobility of the user and the service migration time for different services is introduced. Results collected from a real experimental test-bed of connected vehicles show that there is a need to explore proactive service migration based on the mobility of users. This can result in better resource usage and better Quality of Service for the mobile user. Additionally, a study on the performance of the transport protocol and its impact in the context of live service migration for highly mobile environments is presented with results in terms of latency, bandwidth, and burst and their potential effect on the time it takes to migrate services

    Hybrid-Vehfog: A Robust Approach for Reliable Dissemination of Critical Messages in Connected Vehicles

    Full text link
    Vehicular Ad-hoc Networks (VANET) enable efficient communication between vehicles with the aim of improving road safety. However, the growing number of vehicles in dense regions and obstacle shadowing regions like Manhattan and other downtown areas leads to frequent disconnection problems resulting in disrupted radio wave propagation between vehicles. To address this issue and to transmit critical messages between vehicles and drones deployed from service vehicles to overcome road incidents and obstacles, we proposed a hybrid technique based on fog computing called Hybrid-Vehfog to disseminate messages in obstacle shadowing regions, and multi-hop technique to disseminate messages in non-obstacle shadowing regions. Our proposed algorithm dynamically adapts to changes in an environment and benefits in efficiency with robust drone deployment capability as needed. Performance of Hybrid-Vehfog is carried out in Network Simulator (NS-2) and Simulation of Urban Mobility (SUMO) simulators. The results showed that Hybrid-Vehfog outperformed Cloud-assisted Message Downlink Dissemination Scheme (CMDS), Cross-Layer Broadcast Protocol (CLBP), PEer-to-Peer protocol for Allocated REsource (PrEPARE), Fog-Named Data Networking (NDN) with mobility, and flooding schemes at all vehicle densities and simulation times
    • …
    corecore