84 research outputs found

    Recognisable languages over monads

    Full text link
    The principle behind algebraic language theory for various kinds of structures, such as words or trees, is to use a compositional function from the structures into a finite set. To talk about compositionality, one needs some way of composing structures into bigger structures. It so happens that category theory has an abstract concept for this, namely a monad. The goal of this paper is to propose monads as a unifying framework for discussing existing algebras and designing new algebras

    Equational theories of profinite structures

    Full text link
    In this paper we consider a general way of constructing profinite struc- tures based on a given framework - a countable family of objects and a countable family of recognisers (e.g. formulas). The main theorem states: A subset of a family of recognisable sets is a lattice if and only if it is definable by a family of profinite equations. This result extends Theorem 5.2 from [GGEP08] expressed only for finite words and morphisms to finite monoids. One of the applications of our theorem is the situation where objects are finite relational structures and recognisers are first order sentences. In that setting a simple characterisation of lattices of first order formulas arise

    Automata and rational expressions

    Full text link
    This text is an extended version of the chapter 'Automata and rational expressions' in the AutoMathA Handbook that will appear soon, published by the European Science Foundation and edited by JeanEricPin

    Eilenberg Theorems for Free

    Get PDF
    Eilenberg-type correspondences, relating varieties of languages (e.g. of finite words, infinite words, or trees) to pseudovarieties of finite algebras, form the backbone of algebraic language theory. Numerous such correspondences are known in the literature. We demonstrate that they all arise from the same recipe: one models languages and the algebras recognizing them by monads on an algebraic category, and applies a Stone-type duality. Our main contribution is a variety theorem that covers e.g. Wilke's and Pin's work on ∞\infty-languages, the variety theorem for cost functions of Daviaud, Kuperberg, and Pin, and unifies the two previous categorical approaches of Boja\'nczyk and of Ad\'amek et al. In addition we derive a number of new results, including an extension of the local variety theorem of Gehrke, Grigorieff, and Pin from finite to infinite words

    Syntactic Monoids in a Category

    Get PDF
    The syntactic monoid of a language is generalized to the level of a symmetric monoidal closed category D. This allows for a uniform treatment of several notions of syntactic algebras known in the literature, including the syntactic monoids of Rabin and Scott (D = sets), the syntactic semirings of Polak (D = semilattices), and the syntactic associative algebras of Reutenauer (D = vector spaces). Assuming that D is an entropic variety of algebras, we prove that the syntactic D-monoid of a language L can be constructed as a quotient of a free D-monoid modulo the syntactic congruence of L, and that it is isomorphic to the transition D-monoid of the minimal automaton for L in D. Furthermore, in case the variety D is locally finite, we characterize the regular languages as precisely the languages with finite syntactic D-monoids

    Acta Cybernetica : Volume 10. Number 3.

    Get PDF

    Modal logics on rational Kripke structures

    Get PDF
    This dissertation is a contribution to the study of infinite graphs which can be presented in a finitary way. In particular, the class of rational graphs is studied. The vertices of a rational graph are labeled by a regular language in some finite alphabet and the set of edges of a rational graph is a rational relation on that language. While the first-order logics of these graphs are generally not decidable, the basic modal and tense logics are. A survey on the class of rational graphs is done, whereafter rational Kripke models are studied. These models have rational graphs as underlying frames and are equipped with rational valuations. A rational valuation assigns a regular language to each propositional variable. I investigate modal languages with decidable model checking on rational Kripke models. This leads me to consider regularity preserving relations to see if the class can be generalised even further. Then the concept of a graph being rationally presentable is examined - this is analogous to a graph being automatically presentable. Furthermore, some model theoretic properties of rational Kripke models are examined. In particular, bisimulation equivalences between rational Kripke models are studied. I study three subclasses of rational Kripke models. I give a summary of the results that have been obtained for these classes, look at examples (and non-examples in the case of automatic Kripke frames) and of particular interest is finding extensions of the basic tense logic with decidable model checking on these subclasses. An extension of rational Kripke models is considered next: omega-rational Kripke models. Some of their properties are examined, and again I am particularly interested in finding modal languages with decidable model checking on these classes. Finally I discuss some applications, for example bounded model checking on rational Kripke models, and mention possible directions for further research
    • …
    corecore