829 research outputs found

    ShenZhen transportation system (SZTS): a novel big data benchmark suite

    Get PDF
    Data analytics is at the core of the supply chain for both products and services in modern economies and societies. Big data workloads, however, are placing unprecedented demands on computing technologies, calling for a deep understanding and characterization of these emerging workloads. In this paper, we propose ShenZhen Transportation System (SZTS), a novel big data Hadoop benchmark suite comprised of real-life transportation analysis applications with real-life input data sets from Shenzhen in China. SZTS uniquely focuses on a specific and real-life application domain whereas other existing Hadoop benchmark suites, such as HiBench and CloudRank-D, consist of generic algorithms with synthetic inputs. We perform a cross-layer workload characterization at the microarchitecture level, the operating system (OS) level, and the job level, revealing unique characteristics of SZTS compared to existing Hadoop benchmarks as well as general-purpose multi-core PARSEC benchmarks. We also study the sensitivity of workload behavior with respect to input data size, and we propose a methodology for identifying representative input data sets

    Distance Range Queries in SpatialHadoop

    Get PDF
    Efficient processing of Distance Range Queries (DRQs) is of great importance in spatial databases due to the wide area of applications. This type of spatial query is characterized by a distance range over one or two datasets. The most representative and known DRQs are the ε Distance Range Query (εDRQ) and the ε Distance Range Join Query (εDRJQ). Given the increasing volume of spatial data, it is difficult to perform a DRQ on a centralized machine efficiently. Moreover, the εDRJQ is an expensive spatial operation, since it can be considered a combination of the εDR and the spatial join queries. For this reason, this paper addresses the problem of computing DRQs on big spatial datasets in SpatialHadoop, an extension of Hadoop that supports spatial operations efficiently, and proposes new algorithms in SpatialHadoop to perform efficient parallel DRQs on large-scale spatial datasets. We have evaluated the performance of the proposed algorithms in several situations with big synthetic and real-world datasets. The experiments have demonstrated the efficiency and scalability of our proposal

    Only Aggressive Elephants are Fast Elephants

    Full text link
    Yellow elephants are slow. A major reason is that they consume their inputs entirely before responding to an elephant rider's orders. Some clever riders have trained their yellow elephants to only consume parts of the inputs before responding. However, the teaching time to make an elephant do that is high. So high that the teaching lessons often do not pay off. We take a different approach. We make elephants aggressive; only this will make them very fast. We propose HAIL (Hadoop Aggressive Indexing Library), an enhancement of HDFS and Hadoop MapReduce that dramatically improves runtimes of several classes of MapReduce jobs. HAIL changes the upload pipeline of HDFS in order to create different clustered indexes on each data block replica. An interesting feature of HAIL is that we typically create a win-win situation: we improve both data upload to HDFS and the runtime of the actual Hadoop MapReduce job. In terms of data upload, HAIL improves over HDFS by up to 60% with the default replication factor of three. In terms of query execution, we demonstrate that HAIL runs up to 68x faster than Hadoop. In our experiments, we use six clusters including physical and EC2 clusters of up to 100 nodes. A series of scalability experiments also demonstrates the superiority of HAIL.Comment: VLDB201
    corecore