204 research outputs found

    Weakly-nonlocal Symplectic Structures, Whitham method, and weakly-nonlocal Symplectic Structures of Hydrodynamic Type

    Full text link
    We consider the special type of the field-theoretical Symplectic structures called weakly nonlocal. The structures of this type are in particular very common for the integrable systems like KdV or NLS. We introduce here the special class of the weakly nonlocal Symplectic structures which we call the weakly nonlocal Symplectic structures of Hydrodynamic Type. We investigate then the connection of such structures with the Whitham averaging method and propose the procedure of "averaging" of the weakly nonlocal Symplectic structures. The averaging procedure gives the weakly nonlocal Symplectic Structure of Hydrodynamic Type for the corresponding Whitham system. The procedure gives also the "action variables" corresponding to the wave numbers of mm-phase solutions of initial system which give the additional conservation laws for the Whitham system.Comment: 64 pages, Late

    Riemannian stochastic approximation algorithms

    Full text link
    We examine a wide class of stochastic approximation algorithms for solving (stochastic) nonlinear problems on Riemannian manifolds. Such algorithms arise naturally in the study of Riemannian optimization, game theory and optimal transport, but their behavior is much less understood compared to the Euclidean case because of the lack of a global linear structure on the manifold. We overcome this difficulty by introducing a suitable Fermi coordinate frame which allows us to map the asymptotic behavior of the Riemannian Robbins-Monro (RRM) algorithms under study to that of an associated deterministic dynamical system. In so doing, we provide a general template of almost sure convergence results that mirrors and extends the existing theory for Euclidean Robbins-Monro schemes, despite the significant complications that arise due to the curvature and topology of the underlying manifold. We showcase the flexibility of the proposed framework by applying it to a range of retraction-based variants of the popular optimistic / extra-gradient methods for solving minimization problems and games, and we provide a unified treatment for their convergence.Comment: 33 pages, 2 figures; a one-page abstract of this paper was presented in COLT 202

    MEANS AND AVERAGING ON RIEMANNIAN MANIFOLDS

    Get PDF
    Processing of manifold-valued data has received considerable attention in recent years. Standard data processing methods are not adequate for such data. Among many related data processing tasks finding means or averages of manifold-valued data is a basic and important one. Although means on Riemannian manifolds have a long history, there are still many unanswered theoretical questions about them, some of which we try to answer. We focus on two classes of means: the Riemannian LpL^{p} mean and the recursive-iterative means. The Riemannian LpL^{p} mean is defined as the solution(s) of a minimization problem, while the recursive-iterative means are defined based on the notion of Mean-Invariance (MI) in a recursive and iterative process. We give a new existence and uniqueness result for the Riemannian LpL^{p} mean. The significant consequence is that it shows the local and global definitions of the Riemannian LpL^{p} mean coincide under an uncompromised condition which guarantees the uniqueness of the local mean. We also study smoothness, isometry compatibility, convexity and noise sensitivity properties of the LpL^{p} mean. In particular, we argue that positive sectional curvature of a manifold can cause high sensitivity to noise for the L2L^{2} mean which might lead to a non-averaging behavior of that mean. We show that the L2L^{2} mean on a manifold of positive curvature can have an averaging property in a weak sense. We introduce the notion of MI, and study a large class of recursive-iterative means. MI means are related to an interesting class of dynamical systems that can find Riemannian convex combinations. A special class of the MI means called pairwise mean, which through an iterative scheme called Perimeter Shrinkage is related to cyclic pursuit on manifolds, is also studied. Finally, we derive results specific to the special orthogonal group and the Grassmannian manifold, as these manifolds appear naturally in many applications. We distinguish the 22-norm Finsler balls of appropriate radius in these manifolds as domains for existence and uniqueness of the studied means. We also introduce some efficient numerical methods to perform the related calculations in the specified manifolds

    The Role of Riemannian Manifolds in Computer Vision: From Coding to Deep Metric Learning

    Get PDF
    A diverse number of tasks in computer vision and machine learning enjoy from representations of data that are compact yet discriminative, informative and robust to critical measurements. Two notable representations are offered by Region Covariance Descriptors (RCovD) and linear subspaces which are naturally analyzed through the manifold of Symmetric Positive Definite (SPD) matrices and the Grassmann manifold, respectively, two widely used types of Riemannian manifolds in computer vision. As our first objective, we examine image and video-based recognition applications where the local descriptors have the aforementioned Riemannian structures, namely the SPD or linear subspace structure. Initially, we provide a solution to compute Riemannian version of the conventional Vector of Locally aggregated Descriptors (VLAD), using geodesic distance of the underlying manifold as the nearness measure. Next, by having a closer look at the resulting codes, we formulate a new concept which we name Local Difference Vectors (LDV). LDVs enable us to elegantly expand our Riemannian coding techniques to any arbitrary metric as well as provide intrinsic solutions to Riemannian sparse coding and its variants when local structured descriptors are considered. We then turn our attention to two special types of covariance descriptors namely infinite-dimensional RCovDs and rank-deficient covariance matrices for which the underlying Riemannian structure, i.e. the manifold of SPD matrices is out of reach to great extent. %Generally speaking, infinite-dimensional RCovDs offer better discriminatory power over their low-dimensional counterparts. To overcome this difficulty, we propose to approximate the infinite-dimensional RCovDs by making use of two feature mappings, namely random Fourier features and the Nystrom method. As for the rank-deficient covariance matrices, unlike most existing approaches that employ inference tools by predefined regularizers, we derive positive definite kernels that can be decomposed into the kernels on the cone of SPD matrices and kernels on the Grassmann manifolds and show their effectiveness for image set classification task. Furthermore, inspired by attractive properties of Riemannian optimization techniques, we extend the recently introduced Keep It Simple and Straightforward MEtric learning (KISSME) method to the scenarios where input data is non-linearly distributed. To this end, we make use of the infinite dimensional covariance matrices and propose techniques towards projecting on the positive cone in a Reproducing Kernel Hilbert Space (RKHS). We also address the sensitivity issue of the KISSME to the input dimensionality. The KISSME algorithm is greatly dependent on Principal Component Analysis (PCA) as a preprocessing step which can lead to difficulties, especially when the dimensionality is not meticulously set. To address this issue, based on the KISSME algorithm, we develop a Riemannian framework to jointly learn a mapping performing dimensionality reduction and a metric in the induced space. Lastly, in line with the recent trend in metric learning, we devise end-to-end learning of a generic deep network for metric learning using our derivation

    Partial regularity for manifold constrained p(x)-harmonic maps

    Get PDF
    We prove that manifold constrained p(x)p(x)-harmonic maps are C1,βC^{1,\beta}-regular outside a set of zero nn-dimensional Lebesgue's measure, for some β∈(0,1)\beta \in (0,1). We also provide an estimate from above of the Hausdorff dimension of the singular set

    Inference and Model Parameter Learning for Image Labeling by Geometric Assignment

    Get PDF
    Image labeling is a fundamental problem in the area of low-level image analysis. In this work, we present novel approaches to maximum a posteriori (MAP) inference and model parameter learning for image labeling, respectively. Both approaches are formulated in a smooth geometric setting, whose respective solution space is a simple Riemannian manifold. Optimization consists of multiplicative updates that geometrically integrate the resulting Riemannian gradient flow. Our novel approach to MAP inference is based on discrete graphical models. By utilizing local Wasserstein distances for coupling assignment measures across edges of the underlying graph, we smoothly approximate a given discrete objective function and restrict it to the assignment manifold. A corresponding update scheme combines geometric integration of the resulting gradient flow, and rounding to integral solutions that represent valid labelings. This formulation constitutes an inner relaxation of the discrete labeling problem, i.e. throughout this process local marginalization constraints known from the established linear programming relaxation are satisfied. Furthermore, we study the inverse problem of model parameter learning using the linear assignment flow and training data with ground truth. This is accomplished by a Riemannian gradient flow on the manifold of parameters that determine the regularization properties of the assignment flow. This smooth formulation enables us to tackle the model parameter learning problem from the perspective of parameter estimation of dynamical systems. By using symplectic partitioned Runge--Kutta methods for numerical integration, we show that deriving the sensitivity conditions of the parameter learning problem and its discretization commute. A favorable property of our approach is that learning is based on exact inference
    • …
    corecore