149 research outputs found

    Fault detection for the Benfield process using a closed-loop subspace re-identification approach

    Get PDF
    Closed-loop system identification and fault detection and isolation are the two fundamental building blocks of process monitoring. Efficient and accurate process monitoring increases plant availability and utilisation. This dissertation investigates a subspace system identification and fault detection methodology for the Benfield process, used by Sasol, Synfuels in Secunda, South Africa, to remove CO2 from CO2-rich tail gas. Subspace identification methods originated between system theory, geometry and numerical linear algebra which makes it a computationally efficient tool to estimate system parameters. Subspace identification methods are classified as Black-Box identification techniques, where it does not rely on a-priori process information and estimates the process model structure and order automatically. Typical subspace identification algorithms use non-parsimonious model formulation, with extra terms in the model that appear to be non-causal (stochastic noise components). These extra terms are included to conveniently perform subspace projection, but are the cause for inflated variance in the estimates, and partially responsible for the loss of closed-loop identifiably. The subspace identification methodology proposed in this dissertation incorporates two successive LQ decompositions to remove stochastic components and obtain state-space models of the plant respectively. The stability of the identified plant is further guaranteed by using the shift invariant property of the extended observability matrix by appending the shifted extended observability matrix by a block of zeros. It is shown that the spectral radius of the identified system matrices all lies within a unit boundary, when the system matrices are derived from the newly appended extended observability matrix. The proposed subspace identification methodology is validated and verified by re-identifying the Benfield process operating in closed-loop, with an RMPCT controller, using measured closed-loop process data. Models that have been identified from data measured from the Benfield process operating in closed-loop with an RMPCT controller produced validation data fits of 65% and higher. From residual analysis results, it was concluded that the proposed subspace identification method produce models that are accurate in predicting future outputs and represent a wide variety of process inputs. A parametric fault detection methodology is proposed that monitors the estimated system parameters as identified from the subspace identification methodology. The fault detection methodology is based on the monitoring of parameter discrepancies, where sporadic parameter deviations will be detected as faults. Extended Kalman filter theory is implemented to estimate system parameters, instead of system states, as new process data becomes readily available. The extended Kalman filter needs accurate initial parameter estimates and is thus periodically updated by the subspace identification methodology, as a new set of more accurate parameters have been identified. The proposed fault detection methodology is validated and verified by monitoring process behaviour of the Benfield process. Faults that were monitored for, and detected include foaming, flooding and sensor faults. Initial process parameters as identified from the subspace method can be tracked efficiently by using an extended Kalman filter. This enables the fault detection methodology to identify process parameter deviations, with a process parameter deviation sensitivity of 2% or higher. This means that a 2% parameter deviation will be detected which greatly enhances the fault detection efficiency and sensitivity.Dissertation (MEng)--University of Pretoria, 2008.Electrical, Electronic and Computer Engineeringunrestricte

    MPC: Relevant Identification and Control in the Latent Variable Space

    Full text link
    Control predictivo basado en modelos (MPC) es una metodología de control ampliamente utilizada en la industria por su habilidad para controlar procesos multivariable con restricciones en sus entradas y sus salidas. Se distinguen dos fases en la implementación de MPC: identificación y control. El propósito de esta tesis es doble: realizar contribuciones en la identificación para MPC y proponer una nueva metodología de control MPC. La respuesta en bucle cerrado de una implementación de MPC depende, en gran medida, de la capacidad de predicción del modelo; luego la identificación del modelo es un punto crucial en MPC y la parte que a menudo exige la mayor parte del tiempo del proyecto. El primer objetivo que cubre la tesis es la identificación para MPC. Puesto que un modelo es una aproximación del comportamiento de un proceso, dicha aproximación se puede hacer teniendo en cuenta el fin que se le va a dar al modelo. En MPC, el modelo se utiliza para realizar predicciones dentro de una ventana futura, luego la identificación para MPC (MRI) tiene en cuenta dicho uso del modelo y considera los errores de predicción dentro de dicha ventana para el ajuste de los parámetros del modelo. En esta tesis, se cubren tres temas dentro de MRI. Primero se define MRI y las distintas formas de abordarlo. Luego se compara en términos de MRI el ajuste de un modelo con múltiples entradas y múltiples salidas con el ajuste de varios modelos con múltiples entradas y una salida concluyendo que el ajuste de un único modelo con múltiples entradas y múltiples salidas proporciona mejores resultados en términos de MRI para horizontes de predicción lo suficientemente grandes. Por último, se propone el algoritmo PLS-PH para implementar MRI con modelos paramétricos en el caso de correlación en los datos de identificación. PLS-PH es un método de optimización numérica por búsqueda lineal basado en PLS (mínimos cuadrados parciales). Se muestra en un ejemplo como PLS-PH es capaz de proporcionar mejores modelos que las técnicas convencionales de MRI en modelos paramétricos en el caso de correlación en los datos de identi ficación. Una vez obtenido el modelo se puede formular el controlador predictivo. En esta tesis se propone LV-MPC, un controlador predictivo para procesos continuos que implementa la optimización en el espacio de las componentes principales.Laurí Pla, D. (2012). MPC: Relevant Identification and Control in the Latent Variable Space [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/15178Palanci

    The importance of selecting the optimal number of principal components for fault detection using principal component analysis

    Get PDF
    Includes summary.Includes bibliographical references.Fault detection and isolation are the two fundamental building blocks of process monitoring. Accurate and efficient process monitoring increases plant availability and utilization. Principal component analysis is one of the statistical techniques that are used for fault detection. Determination of the number of PCs to be retained plays a big role in detecting a fault using the PCA technique. In this dissertation focus has been drawn on the methods of determining the number of PCs to be retained for accurate and effective fault detection in a laboratory thermal system. SNR method of determining number of PCs, which is a relatively recent method, has been compared to two commonly used methods for the same, the CPV and the scree test methods

    Autonomous Control of Space Reactor Systems

    Full text link
    corecore