83,595 research outputs found

    MIMO Grid Impedance Identification of Three-Phase Power Systems: Parametric vs. Nonparametric Approaches

    Full text link
    A fast and accurate grid impedance measurement of three-phase power systems is crucial for online assessment of power system stability and adaptive control of grid-connected converters. Existing grid impedance measurement approaches typically rely on pointwise sinusoidal injections or sequential wideband perturbations to identify a nonparametric grid impedance curve via fast Fourier computations in the frequency domain. This is not only time-consuming, but also inaccurate during time-varying grid conditions, while on top of that, the identified nonparametric model cannot be immediately used for stability analysis or control design. To tackle these problems, we propose to use parametric system identification techniques (e.g., prediction error or subspace methods) to obtain a parametric impedance model directly from time-domain current and voltage data. Our approach relies on injecting wideband excitation signals in the converter's controller and allows to accurately identify the grid impedance in closed loop within one injection and measurement cycle. Even though the underlying parametric system identification techniques are well-studied in general, their utilization in a grid impedance identification setup poses specific challenges, is vastly underexplored, and has not gained adequate attention in urgent and timely power systems applications. To this end, we demonstrate in numerical experiments how the proposed parametric approach can accomplish a significant improvement compared to prevalent nonparametric methods.Comment: 7 pages, 7 figure

    A Data-driven Approach to Robust Control of Multivariable Systems by Convex Optimization

    Get PDF
    The frequency-domain data of a multivariable system in different operating points is used to design a robust controller with respect to the measurement noise and multimodel uncertainty. The controller is fully parametrized in terms of matrix polynomial functions and can be formulated as a centralized, decentralized or distributed controller. All standard performance specifications like H2H_2, HH_\infty and loop shaping are considered in a unified framework for continuous- and discrete-time systems. The control problem is formulated as a convex-concave optimization problem and then convexified by linearization of the concave part around an initial controller. The performance criterion converges monotonically to a local optimal solution in an iterative algorithm. The effectiveness of the method is compared with fixed-structure controllers using non-smooth optimization and with full-order optimal controllers via simulation examples. Finally, the experimental data of a gyroscope is used to design a data-driven controller that is successfully applied on the real system

    Regulation Theory

    Full text link
    This paper reviews the design of regulation loops for power converters. Power converter control being a vast domain, it does not aim to be exhaustive. The objective is to give a rapid overview of the main synthesis methods in both continuous- and discrete-time domains.Comment: 23 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    On Validating Closed-Loop Behaviour from Noisy Frequency-Response Measurements

    Get PDF
    It is shown how noisy closed-loop frequency-response measurements can be used to obtain pointwise in frequency bounds on the possible difference between the actual closed-loop system and the closed-loop comprising a nominal model of the plant and the stabilising controller. To this end, Vinnicombe's gap metric framework for robustness analysis plays a central role. Indeed, an optimisation problem and corresponding algorithm are proposed for estimating the chordal distance between the frequency responses of the nominal plant model and a plant that is consistent with the closed-loop data and a priori information, when projected onto the Riemann sphere

    Space Structures: Issues in Dynamics and Control

    Get PDF
    A selective technical overview is presented on the vibration and control of large space structures, the analysis, design, and construction of which will require major technical contributions from the civil/structural, mechanical, and extended engineering communities. The immediacy of the U.S. space station makes the particular emphasis placed on large space structures and their control appropriate. The space station is but one part of the space program, and includes the lunar base, which the space station is to service. This paper attempts to summarize some of the key technical issues and hence provide a starting point for further involvement. The first half of this paper provides an introduction and overview of large space structures and their dynamics; the latter half discusses structural control, including control‐system design and nonlinearities. A crucial aspect of the large space structures problem is that dynamics and control must be considered simultaneously; the problems cannot be addressed individually and coupled as an afterthought

    Compressed Passive Macromodeling

    Get PDF
    This paper presents an approach for the extraction of passive macromodels of large-scale interconnects from their frequency-domain scattering responses. Here, large scale is intended both in terms of number of electrical ports and required dynamic model order. For such structures, standard approaches based on rational approximation via vector fitting and passivity enforcement via model perturbation may fail because of excessive computational requirements, both in terms of memory size and runtime. Our approach addresses this complexity by first reducing the redundancy in the raw scattering responses through a projection and approximation process based on a truncated singular value decomposition. Then we formulate a compressed rational fitting and passivity enforcement framework which is able to obtain speedup factors up to 2 and 3 orders of magnitude with respect to standard approaches, with full control over the approximation errors. Numerical results on a large set of benchmark cases demonstrate the effectiveness of the proposed techniqu

    Analysis of pilot control strategy

    Get PDF
    Methods for nonintrusive identification of pilot control strategy and task execution dynamics are presented along with examples based on flight data. The specific analysis technique is Nonintrusive Parameter Identification Procedure (NIPIP), which is described in a companion user's guide (NASA CR-170398). Quantification of pilot control strategy and task execution dynamics is discussed in general terms followed by a more detailed description of how NIPIP can be applied. The examples are based on flight data obtained from the NASA F-8 digital fly by wire airplane. These examples involve various piloting tasks and control axes as well as a demonstration of how the dynamics of the aircraft itself are identified using NIPIP. Application of NIPIP to the AFTI/F-16 flight test program is discussed. Recommendations are made for flight test applications in general and refinement of NIPIP to include interactive computer graphics

    Nonlinear and adaptive control

    Get PDF
    The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies
    corecore