4,906 research outputs found

    Store-and-forward based methods for the signal control problem in large-scale congested urban road networks

    Get PDF
    The problem of designing network-wide traffic signal control strategies for large-scale congested urban road networks is considered. One known and two novel methodologies, all based on the store-and-forward modeling paradigm, are presented and compared. The known methodology is a linear multivariable feedback regulator derived through the formulation of a linear-quadratic optimal control problem. An alternative, novel methodology consists of an open-loop constrained quadratic optimal control problem, whose numerical solution is achieved via quadratic programming. Yet a different formulation leads to an open-loop constrained nonlinear optimal control problem, whose numerical solution is achieved by use of a feasible-direction algorithm. A preliminary simulation-based investigation of the signal control problem for a large-scale urban road network using these methodologies demonstrates the comparative efficiency and real-time feasibility of the developed signal control methods

    A rolling-horizon quadratic-programming approach to the signal control problem in large-scale congested urban road networks

    Get PDF
    The paper investigates the efficiency of a recently developed signal control methodology, which offers a computationally feasible technique for real-time network-wide signal control in large-scale urban traffic networks and is applicable also under congested traffic conditions. In this methodology, the traffic flow process is modeled by use of the store-and-forward modeling paradigm, and the problem of network-wide signal control (including all constraints) is formulated as a quadratic-programming problem that aims at minimizing and balancing the link queues so as to minimize the risk of queue spillback. For the application of the proposed methodology in real time, the corresponding optimization algorithm is embedded in a rolling-horizon (model-predictive) control scheme. The control strategy’s efficiency and real-time feasibility is demonstrated and compared with the Linear-Quadratic approach taken by the signal control strategy TUC (Traffic-responsive Urban Control) as well as with optimized fixed-control settings via their simulation-based application to the road network of the city centre of Chania, Greece, under a number of different demand scenarios. The comparative evaluation is based on various criteria and tools including the recently proposed fundamental diagram for urban network traffic

    Deep learning for real-time traffic signal control on urban networks

    Get PDF
    Real-time traffic signal controls are frequently challenged by (1) uncertain knowledge about the traffic states; (2) need for efficient computation to allow timely decisions; (3) multiple objectives such as traffic delays and vehicle emissions that are difficult to optimize; and (4) idealized assumptions about data completeness and quality that are often made in developing many theoretical signal control models. This thesis addresses these challenges by proposing two real-time signal control frameworks based on deep learning techniques, followed by extensive simulation tests that verifies their effectiveness in view of the aforementioned challenges. The first method, called the Nonlinear Decision Rule (NDR), defines a nonlinear mapping between network states and signal control parameters to network performances based on prevailing traffic conditions, and such a mapping is optimized via off-line simulation. The NDR is instantiated with two neural networks: feedforward neural network (FFNN) and recurrent neural network (RNN), which have different ways of processing traffic information in the near past. The NDR is implemented and tested within microscopic traffic simulation (S-Paramics) for a real-world network in West Glasgow, where the off-line training of the NDR amounts to a simulation-based optimization procedure aiming to reduce delay, CO2 and black carbon emissions. Extensive tests are performed to assess the NDR framework, not only in terms of its effectiveness in optimizing different traffic and environmental objectives, but also in relation to local vs. global benefits, trade-off between delay and emissions, impact of sensor locations, and different levels of network saturation. The second method, called the Advanced Reinforcement Learning (ARL), employs the potential-based reward shaping function using Q-learning and 3rd party advisor to enhance its performance over conventional reinforcement learning. The potential-based reward shaping in this thesis obtains an opinion from the 3rd party advisor when calculating reward. This technique can resolve the problem of sparse reward and slow learning speed. The ARL is tested with a range of existing reinforcement learning methods. The results clearly show that ARL outperforms the other models in almost all the scenarios. Lastly, this thesis evaluates the impact of information availability and quality on different real-time signal control methods, including the two proposed ones. This is driven by the observation that most responsive signal control models in the literature tend to make idealized assumptions on the quality and availability of data. This research shows the varying levels of performance deterioration of different signal controllers in the presence of missing data, data noise, and different data types. Such knowledge and insights are crucial for real-world implementation of these signal control methods.Open Acces

    A Congestion Detection Based Traffic Control for Signalized Intersection

    Get PDF
    The paper investigates a traffic-responsive control method applicable at isolated signalized intersections. The proposed strategy involves three basic parts: a traffic model, a reconfigurable regulator, and a congestion detection filter. Road traffic dynamics is modeled by the well-known store-and-forward approach. The controller is based on the efficient Linear Quadratic Regulator algorithm. The filter is designed by using the modified version (for discrete time case) of the Fundamental Problem of Residual Generation. The main achievement of the system is the ability to deal with a time-varying model parameter, namely the saturation flow rate of the road links. To this end, an error term is estimated continuously by appropriate fault detection algorithm. The predicted error term is further used by the reconfigurable controller which finally aims to mitigate the number of vehicles waiting at the stop line, i.e. the delay caused by the intersection. A simulation study is also carried out to demonstrate the effectiveness of the controller extended by congestion detection filter

    Control and optimization methods for traffic signal control in large-scale congested urban road networks

    Get PDF
    The problem of designing real-time traffic signal control strategies for large-scale congested urban road networks via suitable application of control and optimization methods is considered. Three alternative methodologies are proposed, all based on the store-and-forward modeling (SFM) paradigm. The first methodology results in a linear multivariable feedback regulator derived through the formulation of the problem as a linear-quadratic (LQ) optimal control problem. The second methodology leads to an open-loop constrained quadratic optimal control problem whose numerical solution is achieved via quadratic-programming (QP). Finally, the third methodology leads to an open-loop constrained nonlinear optimal control problem whose numerical solution is effectuated by use of a feasible-direction algorithm. A simulation-based investigation of the signal control problem for a large-scale urban network using these methodologies is presented. Results demonstrate the efficiency and real-time feasibility of the developed generic control methods

    New Framework and Decision Support Tool to Warrant Detour Operations During Freeway Corridor Incident Management

    Get PDF
    As reported in the literature, the mobility and reliability of the highway systems in the United States have been significantly undermined by traffic delays on freeway corridors due to non-recurrent traffic congestion. Many of those delays are caused by the reduced capacity and overwhelming demand on critical metropolitan corridors coupled with long incident durations. In most scenarios, if proper detour strategies could be implemented in time, motorists could circumvent the congested segments by detouring through parallel arterials, which will significantly improve the mobility of all vehicles in the corridor system. Nevertheless, prior to implementation of any detour strategy, traffic managers need a set of well-justified warrants, as implementing detour operations usually demand substantial amount of resources and manpower. To contend with the aforementioned issues, this study is focused on developing a new multi-criteria framework along with an advanced and computation-friendly tool for traffic managers to decide whether or not and when to implement corridor detour operations. The expected contributions of this study are: * Proposing a well-calibrated corridor simulation network and a comprehensive set of experimental scenarios to take into account many potential affecting factors on traffic manager\u27s decision making process and ensure the effectiveness of the proposed detour warrant tool; * Developing detour decision models, including a two-choice model and a multi-choice model, based on generated optima detour traffic flow rates for each scenario from a diversion control model to allow responsible traffic managers to make best detour decisions during real-time incident management; and * Estimating the resulting benefits for comparison with the operational costs using the output from the diversion control model to further validate the developed detour decision model from the overall societal perspective
    • …
    corecore