246 research outputs found

    Design criteria of a transcutaneous power delivery system for implantable devices.

    Get PDF
    Implantable cardiac assist devices such as artificial hearts and blood pumps are a rapidly growing therapy used for treating moderate to severe congestive heart failure. While current treatments offer improved heart failure survival and increased patient functionality with enhanced quality of life, powering these devices are still constraining. In practice, percutaneous cables passing through skin are used for power and control data transmission requiring patients to maintain a sterile dressing on the skin cable-exit site. This contact site limits patient movement as it is vulnerable to wound infection due to trauma and poor healing. As a result, a sterile dressing has to be maintained and nursed regularly for treating the wound. Complications from the exit site infections are a leading cause of death in long-term support with these devices. Wireless power and control transmission systems have been studied and developed over years in order to avoid percutaneous cables while supplying power efficiently to the implanted device. These power systems, commonly named Transcutaneous Energy Transfer (TET) systems, enable power transmission across the skin without direct electrical connectivity to the power source. TET systems use time-varying electromagnetic induction produced by a primary coil that is usually placed near skin outside the body. The induced voltage in an implanted secondary coil is then rectified and regulated to transfer energy to an implanted rechargeable battery in order to power the biomedical load device. Efficient and optimum energy transfer using such transcutaneous methods is more complex for mobile patients due to coupling discrepancies caused by variations in the alignment of the coil. The research studies equivalent maximum power transfer topologies for evaluating voltage gain and coupling link efficiency of TET system. Also, this research adds to previous efforts by generalizing different scenarios of misalignments of different coil size that affects the coupling link. As a whole, this study of geometric coil misalignments reconsiders potential anatomic location for coil placement to optimize TET systems performance in anticipated environment for efficient and safe operation.--Abstract

    Recent Advances in Neural Recording Microsystems

    Get PDF
    The accelerating pace of research in neuroscience has created a considerable demand for neural interfacing microsystems capable of monitoring the activity of large groups of neurons. These emerging tools have revealed a tremendous potential for the advancement of knowledge in brain research and for the development of useful clinical applications. They can extract the relevant control signals directly from the brain enabling individuals with severe disabilities to communicate their intentions to other devices, like computers or various prostheses. Such microsystems are self-contained devices composed of a neural probe attached with an integrated circuit for extracting neural signals from multiple channels, and transferring the data outside the body. The greatest challenge facing development of such emerging devices into viable clinical systems involves addressing their small form factor and low-power consumption constraints, while providing superior resolution. In this paper, we survey the recent progress in the design and the implementation of multi-channel neural recording Microsystems, with particular emphasis on the design of recording and telemetry electronics. An overview of the numerous neural signal modalities is given and the existing microsystem topologies are covered. We present energy-efficient sensory circuits to retrieve weak signals from neural probes and we compare them. We cover data management and smart power scheduling approaches, and we review advances in low-power telemetry. Finally, we conclude by summarizing the remaining challenges and by highlighting the emerging trends in the field

    SenseBack - An implantable system for bidirectional neural interfacing

    Get PDF
    Chronic in-vivo neurophysiology experiments require highly miniaturized, remotely powered multi-channel neural interfaces which are currently lacking in power or flexibility post implantation. In this article, to resolve this problem we present the SenseBack system, a post-implantation reprogrammable wireless 32-channel bidirectional neural interfacing that can enable chronic peripheral electrophysiology experiments in freely behaving small animals. The large number of channels for a peripheral neural interface, coupled with fully implantable hardware and complete software flexibility enable complex in-vivo studies where the system can adapt to evolving study needs as they arise. In complementary ex-vivo and in-vivo preparations, we demonstrate that this system can record neural signals and perform high-voltage, bipolar stimulation on any channel. In addition, we demonstrate transcutaneous power delivery and Bluetooth 5 data communication with a PC. The SenseBack system is capable of stimulation on any channel with ±20 V of compliance and up to 315 μA of current, and highly configurable recording with per-channel adjustable gain and filtering with 8 sets of 10-bit ADCs to sample data at 20 kHz for each channel. To the best of our knowledge this is the first such implantable research platform offering this level of performance and flexibility post-implantation (including complete reprogramming even after encapsulation) for small animal electrophysiology. Here we present initial acute trials, demonstrations and progress towards a system that we expect to enable a wide range of electrophysiology experiments in freely behaving animals

    An Implantable Peripheral Nerve Recording and Stimulation System for Experiments on Freely Moving Animal Subjects

    Get PDF
    A new study with rat sciatic nerve model for peripheral nerve interfacing is presented using a fully-implanted inductively-powered recording and stimulation system in a wirelessly-powered standard homecage that allows animal subjects move freely within the homecage. The Wireless Implantable Neural Recording and Stimulation (WINeRS) system offers 32-channel peripheral nerve recording and 4-channel current-controlled stimulation capabilities in a 3 × 1.5 × 0.5 cm3 package. A bi-directional data link is established by on-off keying pulse-position modulation (OOK-PPM) in near field for narrow-band downlink and 433 MHz OOK for wideband uplink. An external wideband receiver is designed by adopting a commercial software defined radio (SDR) for a robust wideband data acquisition on a PC. The WINeRS-8 prototypes in two forms of battery-powered headstage and wirelessly-powered implant are validated in vivo, and compared with a commercial system. In the animal study, evoked compound action potentials were recorded to verify the stimulation and recording capabilities of the WINeRS-8 system with 32-ch penetrating and 4-ch cuff electrodes on the sciatic nerve of awake freely-behaving rats. Compared to the conventional battery-powered system, WINeRS can be used in closed-loop recording and stimulation experiments over extended periods without adding the burden of carrying batteries on the animal subject or interrupting the experiment

    A Three – tier bio-implantable sensor monitoring and communications platform

    Get PDF
    One major hindrance to the advent of novel bio-implantable sensor technologies is the need for a reliable power source and data communications platform capable of continuously, remotely, and wirelessly monitoring deeply implantable biomedical devices. This research proposes the feasibility and potential of combining well established, ‘human-friendly' inductive and ultrasonic technologies to produce a proof-of-concept, generic, multi-tier power transfer and data communication platform suitable for low-power, periodically-activated implantable analogue bio-sensors. In the inductive sub-system presented, 5 W of power is transferred across a 10 mm gap between a single pair of 39 mm (primary) and 33 mm (secondary) circular printed spiral coils (PSCs). These are printed using an 8000 dpi resolution photoplotter and fabricated on PCB by wet-etching, to the maximum permissible density. Our ultrasonic sub-system, consisting of a single pair of Pz21 (transmitter) and Pz26 (receiver) piezoelectric PZT ceramic discs driven by low-frequency, radial/planar excitation (-31 mode), without acoustic matching layers, is also reported here for the first time. The discs are characterised by propagation tank test and directly driven by the inductively coupled power to deliver 29 μW to a receiver (implant) employing a low voltage start-up IC positioned 70 mm deep within a homogeneous liquid phantom. No batteries are used. The deep implant is thus intermittently powered every 800 ms to charge a capacitor which enables its microcontroller, operating with a 500 kHz clock, to transmit a single nibble (4 bits) of digitized sensed data over a period of ~18 ms from deep within the phantom, to the outside world. A power transfer efficiency of 83% using our prototype CMOS logic-gate IC driver is reported for the inductively coupled part of the system. Overall prototype system power consumption is 2.3 W with a total power transfer efficiency of 1% achieved across the tiers

    Advances in Microelectronics for Implantable Medical Devices

    Get PDF
    Implantable medical devices provide therapy to treat numerous health conditions as well as monitoring and diagnosis. Over the years, the development of these devices has seen remarkable progress thanks to tremendous advances in microelectronics, electrode technology, packaging and signal processing techniques. Many of today’s implantable devices use wireless technology to supply power and provide communication. There are many challenges when creating an implantable device. Issues such as reliable and fast bidirectional data communication, efficient power delivery to the implantable circuits, low noise and low power for the recording part of the system, and delivery of safe stimulation to avoid tissue and electrode damage are some of the challenges faced by the microelectronics circuit designer. This paper provides a review of advances in microelectronics over the last decade or so for implantable medical devices and systems. The focus is on neural recording and stimulation circuits suitable for fabrication in modern silicon process technologies and biotelemetry methods for power and data transfer, with particular emphasis on methods employing radio frequency inductive coupling. The paper concludes by highlighting some of the issues that will drive future research in the field

    Power Amplifiers for Electronic Bio-Implants

    Get PDF
    Healthcare systems face continual challenges in meeting their aims to provide quality care to their citizens within tight budgets. Ageing populations in the developed world are perhaps one of the greatest concerns in providing quality healthcare in the future. The median age of citizens in economically developed regions is set to approach 40 years by the year 2050, and reach as high as 55 years in Japan. This trend is likely to lead to strained economies caused by less revenue raised by smaller workforces. Another effect of ageing populations is the need of further care in order to remain healthy. This care varies from frequent check-ups to condition monitoring, compensation for organ malfunction and serious surgical operations. As a result of these trends, healthcare systems will face the task of servicing more people with more serious and expensive health services, all using less available funds. Effort is being focused on running cheaper and more effective healthcare systems and the development of technology to assist in this process is a natural research priority

    High-performance wireless power and data transfer interface for implantable medical devices

    Get PDF
    D’importants progès ont été réalisés dans le développement des systèmes biomédicaux implantables grâce aux dernières avancées de la microélectronique et des technologies sans fil. Néanmoins, ces appareils restent difficiles à commercialier. Cette situation est due particulièrement à un manque de stratégies de design capable supporter les fonctionnalités exigées, aux limites de miniaturisation, ainsi qu’au manque d’interface sans fil à haut débit fiable et faible puissance capable de connecter les implants et les périphériques externes. Le nombre de sites de stimulation et/ou d’électrodes d’enregistrement retrouvés dans les dernières interfaces cerveau-ordinateur (IMC) ne cesse de croître afin d’augmenter la précision de contrôle, et d’améliorer notre compréhension des fonctions cérébrales. Ce nombre est appelé à atteindre un millier de site à court terme, ce qui exige des débits de données atteingnant facilement les 500 Mbps. Ceci étant dit, ces travaux visent à élaborer de nouvelles stratégies innovantes de conception de dispositifs biomédicaux implantables afin de repousser les limites mentionnées ci-dessus. On présente de nouvelles techniques faible puissance beaucoup plus performantes pour le transfert d’énergie et de données sans fil à haut débit ainsi que l’analyse et la réalisation de ces dernières grâce à des prototypes microélectroniques CMOS. Dans un premier temps, ces travaux exposent notre nouvelle structure multibobine inductive à résonance présentant une puissance sans fil distribuée uniformément pour alimenter des systèmes miniatures d’étude du cerveaux avec des models animaux en ilberté ainsi que des dispositifs médicaux implantbles sans fil qui se caractérisent par une capacité de positionnement libre. La structure propose un lien de résonance multibobines inductive, dont le résonateur principal est constitué d’une multitude de résonateurs identiques disposés dans une matrice de bobines carrées. Ces dernières sont connectées en parallèle afin de réaliser des surfaces de puissance (2D) ainsi qu’une chambre d’alimentation (3D). La chambre proposée utilise deux matrices de résonateurs de base, mises face à face et connectés en parallèle afin d’obtenir une distribution d’énergie uniforme en 3D. Chaque surface comprend neuf bobines superposées, connectées en parallèle et réailsées sur une carte de circuit imprimé deux couches FR4. La chambre dispose d’un mécanisme naturel de localisation de puissance qui facilite sa mise en oeuvre et son fonctionnement. En procédant ainsi, nous évitons la nécessité d’une détection active de l’emplacement de la charge et le contrôle d’alimentation. Notre approche permet à cette surface d’alimentation unique de fournir une efficacité de transfert de puissance (PTE) de 69% et une puissance délivrée à la charge (PDL) de 120 mW, pour une distance de séparation de 4 cm, tandis que le prototype de chambre complet fournit un PTE uniforme de 59% et un PDL de 100 mW en 3D, partout à l’intérieur de la chambre avec un volume de chambre de 27 × 27 × 16 cm3. Une étape critique avant d’utiliser un dispositif implantable chez les humains consiste à vérifier ses fonctionnalités sur des sujets animaux. Par conséquent, la chambre d’énergie sans fil conçue sera utilisée afin de caractériser les performances d’ une interface sans fil de transmisison de données dans un environnement réaliste in vivo avec positionement libre. Un émetteur-récepteur full-duplex (FDT) entièrement intégré qui se caractérise par sa faible puissance est conçu pour réaliser une interfaces bi-directionnelles (stimulation et enregistrement) avec des débits asymétriques: des taux de tramnsmission plus élevés sont nécessaires pour l’enregistrement électrophysiologique multicanal (signaux de liaison montante) alors que les taux moins élevés sont utilisés pour la stimulation (les signaux de liaison descendante). L’émetteur (TX) et le récepteur (RX) se partagent une seule antenne afin de réduire la taille de l’implant. L’émetteur utilise la radio ultra-large bande par impulsions (IR-UWB) basée sur l’approche edge combining et le RX utilise la bande ISM (Industrielle, Scientifique et Médicale) de fréquence central 2.4 GHz et la modulation on-off-keying (OOK). Une bonne isolation (> 20 dB) est obtenue entre le TX et le RX grâce à 1) la mise en forme les impulsions émises dans le spectre UWB non réglementée (3.1-7 GHz), et 2) le filtrage espace-efficace (évitant l’utilisation d’un circulateur ou d’un diplexeur) du spectre du lien de communication descendant directement au niveau de l’ amplificateur à faible bruit (LNA). L’émetteur UWB 3.1-7 GHz utilise un e modultion OOK ainsi qu’une modulation par déplacement de phase (BPSK) à seulement 10.8 pJ / bits. Le FDT proposé permet d’atteindre 500 Mbps de débit de données en lien montant et 100 Mbps de débit de données de lien descendant. Il est entièrement intégré dans un procédé TSMC CMOS 0.18 um standard et possède une taille totale de 0.8 mm2. La consommation totale d’énergie mesurée est de 10.4 mW (5 mW pour RX et 5.4 mW pour TX au taux de 500 Mbps).In recent years, there has been major progress on implantable biomedical systems that support most of the functionalities of wireless implantable devices. Nevertheless, these devices remain mostly restricted to be commercialized, in part due to weakness of a straightforward design to support the required functionalities, limitation on miniaturization, and lack of a reliable low-power high data rate interface between implants and external devices. This research provides novel strategies on the design of implantable biomedical devices that addresses these limitations by presenting analysis and techniques for wireless power transfer and efficient data transfer. The first part of this research includes our proposed novel resonance-based multicoil inductive power link structure with uniform power distribution to wirelessly power up smart animal research systems and implanted medical devices with high power efficiency and free positioning capability. The proposed structure consists of a multicoil resonance inductive link, which primary resonator array is made of several identical resonators enclosed in a scalable array of overlapping square coils that are connected in parallel and arranged in power surface (2D) and power chamber (3D) configurations. The proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution in 3D. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and eases its operation by avoiding the need for active detection of the load location and power control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a chamber size of 27×27×16 cm3. The second part of this research includes our proposed novel, fully-integrated, low-power fullduplex transceiver (FDT) to support bi-directional neural interfacing applications (stimulating and recording) with asymmetric data rates: higher rates are required for recording (uplink signals) than stimulation (downlink signals). The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by space-efficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier (LNA). The UWB 3.1-7 GHz transmitter using OOK and binary phase shift keying (BPSK) modulations at only 10.8 pJ/bit. The proposed FDT provides dual band 500 Mbps TX uplink data rate and 100 Mbps RX downlink data rate. It is fully integrated on standard TSMC 0.18 nm CMOS within a total size of 0.8 mm2. The total power consumption measured 10.4 mW (5 mW for RX and 5.4 mW for TX at the rate of 500 Mbps)

    Applications of Wireless Power Transfer in Medicine : State-of-the-Art Reviews

    Get PDF
    Magnetic resonance within the field of wireless power transfer has seen an increase in popularity over the past decades. This rise can be attributed to the technological advances of electronics and the increased efficiency of popular battery technologies. The same principles of electromagnetic theory can be applied to the medical field. Several medical devices intended for use inside the body use batteries and electrical circuits that could be powered wirelessly. Other medical devices limit the mobility or make patients uncomfortable while in use. The fundamental theory of electromagnetics can improve the field by solving some of these problems. This survey paper summarizes the recent uses and discoveries of wireless power in the medical field. A comprehensive search for papers was conducted using engineering search engines and included papers from related conferences. During the initial search, 247 papers were found then non-relevant papers were eliminated to leave only suitable material. Seventeen relevant journal papers and/or conference papers were found, then separated into defined categories: Implants, Pumps, Ultrasound Imaging, and Gastrointestinal (GI) Endoscopy. The approach and methods for each paper were analyzed and compared yielding a comprehensive review of these state of the art technologies
    • …
    corecore