22,700 research outputs found

    Performance Evaluation of Hyperbolic Position Location Technique in Cellular Wireless Networks

    Get PDF
    This study addresses the wireless geolocation problem that has been an attractive subject for the last few years after Federal Communications Commission (FCC) mandate for wireless service providers to locate emergency 911 users with a high degree of accuracy -within a radius of 125 meters, 67 percent of the time by October 2001. There are a number of different geolocation technologies that have been proposed. These include, Assisted GPS (A-GPS), network-based technologies such as Enhanced Observed Time Difference (E-OTD), Time Difference of Arrival (TDOA), Angle of Arrival (AOA), and Cell of Origin (COO). This research focuses on network based techniques, namely the more prominent TDOA which is also called hyperbolic position location technique. The main problem in time-based positioning systems is solving nonlinear hyperbolic equations derived from set of TDOA estimates. Two algorithms are implemented as a solution to this problem: A closed form solution and a Least Squares (LS) algorithm. Accuracy and computational efficiency performances are compared in a wireless system established using DGPS measurements in Dayton, OH area

    Distributed AOA-based source positioning in NLOS with sensor networks

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper focuses on the problem of positioning a source using angle-of-arrival measurements taken by a wireless sensor network in which some of the nodes experience non lineof-sight (LOS) propagation conditions. In order to mitigate the errors induced by the nodes in NLOS, we derive an algorithm that combines the expectation-maximization algorithm with a weighted least-squares estimation of the source position so that the nodes in NLOS are eventually identified and discarded. Moreover, a distributed version of this algorithm based on a diffusion strategy that iteratively refines the position estimate while driving the network to a consensus is presented.Peer ReviewedPostprint (author's final draft

    Positioning Accuracy Improvement via Distributed Location Estimate in Cooperative Vehicular Networks

    Full text link
    The development of cooperative vehicle safety (CVS) applications, such as collision warnings, turning assistants, and speed advisories, etc., has received great attention in the past few years. Accurate vehicular localization is essential to enable these applications. In this study, motivated by the proliferation of the Global Positioning System (GPS) devices, and the increasing sophistication of wireless communication technologies in vehicular networks, we propose a distributed location estimate algorithm to improve the positioning accuracy via cooperative inter-vehicle distance measurement. In particular, we compute the inter-vehicle distance based on raw GPS pseudorange measurements, instead of depending on traditional radio-based ranging techniques, which usually either suffer from high hardware cost or have inadequate positioning accuracy. In addition, we improve the estimation of the vehicles' locations only based on the inaccurate GPS fixes, without using any anchors with known exact locations. The algorithm is decentralized, which enhances its practicability in highly dynamic vehicular networks. We have developed a simulation model to evaluate the performance of the proposed algorithm, and the results demonstrate that the algorithm can significantly improve the positioning accuracy.Comment: To appear in Proc. of the 15th International IEEE Conference on Intelligent Transportation Systems (IEEE ITSC'12

    Sub-Nanosecond Time of Flight on Commercial Wi-Fi Cards

    Full text link
    Time-of-flight, i.e., the time incurred by a signal to travel from transmitter to receiver, is perhaps the most intuitive way to measure distances using wireless signals. It is used in major positioning systems such as GPS, RADAR, and SONAR. However, attempts at using time-of-flight for indoor localization have failed to deliver acceptable accuracy due to fundamental limitations in measuring time on Wi-Fi and other RF consumer technologies. While the research community has developed alternatives for RF-based indoor localization that do not require time-of-flight, those approaches have their own limitations that hamper their use in practice. In particular, many existing approaches need receivers with large antenna arrays while commercial Wi-Fi nodes have two or three antennas. Other systems require fingerprinting the environment to create signal maps. More fundamentally, none of these methods support indoor positioning between a pair of Wi-Fi devices without~third~party~support. In this paper, we present a set of algorithms that measure the time-of-flight to sub-nanosecond accuracy on commercial Wi-Fi cards. We implement these algorithms and demonstrate a system that achieves accurate device-to-device localization, i.e. enables a pair of Wi-Fi devices to locate each other without any support from the infrastructure, not even the location of the access points.Comment: 14 page
    • …
    corecore