4,548 research outputs found

    Augmented State Linear Covariance Applications for Nonlinear Missile Engagements

    Get PDF
    Sustained actuator saturation is a common occurrence for missile engagements. The saturation nonlinearity creates some difficulty for high-fidelity linear analysis methods. This dissertation investigates three methods of modeling actuator saturation in an advanced linear analysis. The linear covariance tools from this dissertation run extremely fast and provide several advantages over other linear missile engagement analysis methods. First, a simulation is developed and validated for a target engagement scenario without actuator saturation. Next, saturations are introduced to the problem, along with the first analysis method: statistical linear covariance analysis. This method combines the augmented state linear covariance framework with the statistical linearization technique. The second method considered is tunable linear covariance analysis. Tunable linear covariance analysis utilizes a switching parameter to determine when to switch the dynamics of the problem. The final method is called event trigger linear covariance analysis. This method involves switching GN&C modes using a constraint equation and a covariance shaping matrix. All three analysis methods are validated using Monte Carlo methods, and statistical linear covariance analysis is found to be the most robust and accurate of the three methods. This method is utilized to rapidly analyze missile engagement performance under varying levels of saturation. The parameters of the analysis include guidance laws, sensor accuracy levels, target evasive maneuvers, and actuator responsiveness

    Optimal Relative Path Planning for Constrained Stochastic Space Systems

    Get PDF
    Rendezvous and proximity operations for automated spacecraft systems requires advanced path planning techniques that are capable of generating optimal paths. Real-world constraints, such as sensor noise and actuator errors, complicate the planning process. Operations also require flight safety considerations in order to prevent the spacecraft from potentially colliding with the associated companion spacecraft. This work proposes a new, ground-based trajectory planning approach that seeks an optimal trajectory while meeting all mission constraints and accounting for vehicle performance and safety requirements. This approach uses a closed-loop linear covariance simulation of the relative trajectory coupled with a genetic algorithm to determine fuel optimal trajectories. Spacecraft safety is addressed using statistical data from the linear covariance model to bound the probability of collision

    Autonomous landing of fixed-wing aircraft on mobile platforms

    Get PDF
    E n esta tesis se propone un nuevo sistema que permite la operación de aeronaves autónomas sin tren de aterrizaje. El trabajo está motivado por el interés industrial en aeronaves con la capacidad de volar a gran altitud, con más capacidad de carga útil y capaces de aterrizar con viento cruzado. El enfoque seguido en este trabajo consiste en eliminar el sistema de aterrizaje de una aeronave de ala fija empleando una plataforma móvil de aterrizaje en tierra. La aeronave y la plataforma deben sincronizar su movimiento antes del aterrizaje, lo que se logra mediante la estimación del estado relativo entre ambas y el control cooperativo del movimiento. El objetivo principal de esta Tesis es el desarrollo de una solución práctica para el aterrizaje autónomo de una aeronave de ala fija en una plataforma móvil. En la tesis se combinan nuevos métodos con experimentos prácticos para los cuales se ha desarrollado un sistema de pruebas específico. Se desarrollan dos variantes diferentes del sistema de aterrizaje. El primero presta atención especial a la seguridad, es robusto ante retrasos en la comunicación entre vehículos y cumple procedimientos habituales de aterrizaje, al tiempo que reduce la complejidad del sistema. En el segundo se utilizan trayectorias optimizadas del vehículo y sincronización bilateral de posición para maximizar el rendimiento del aterrizaje en términos de requerimientos de longitud necesaria de pista, pero la estabilidad es dependiente del retraso de tiempo, con lo cual es necesario desarrollar un controlador estabilizador ampliado, basado en pasividad, que permite resolver este problema. Ambas estrategias imponen requisitos funcionales a los controladores de cada uno de los vehículos, lo que implica la capacidad de controlar el movimiento longitudinal sin afectar el control lateral o vertical, y viceversa. El control de vuelo basado en energía se utiliza para proporcionar dicha funcionalidad a la aeronave. Los sistemas de aterrizaje desarrollados se han analizado en simulación estableciéndose los límites de rendimiento mediante múltiples repeticiones aleatorias. Se llegó a la conclusión de que el controlador basado en seguridad proporciona un rendimiento de aterrizaje satisfactorio al tiempo que suministra una mayor seguridad operativa y un menor esfuerzo de implementación y certificación. El controlador basado en el rendimiento es prometedor para aplicaciones con una longitud de pista limitada. Se descubrió que los beneficios del controlador basado en el rendimiento son menos pronunciados para una dinámica de vehículos terrestres más lenta. Teniendo en cuenta la dinámica lenta de la configuración del demostrador, se eligió el enfoque basado en la seguridad para los primeros experimentos de aterrizaje. El sistema de aterrizaje se validó en diversas pruebas de aterrizaje exitosas, que, a juicio del autor, son las primeras en el mundo realizadas con aeronaves reales. En última instancia, el concepto propuesto ofrece importantes beneficios y constituye una estrategia prometedora para futuras soluciones de aterrizaje de aeronaves.In this thesis a new landing system is proposed, which allows for the operation of autonomous aircraft without landing gear. The work was motivated by the industrial need for more capable high altitude aircraft systems, which typically suffer from low payload capacity and high crosswind landing sensitivity. The approach followed in this work consists in removing the landing gear system from the aircraft and introducing a mobile ground-based landing platform. The vehicles must synchronize their motion prior to landing, which is achieved through relative state estimation and cooperative motion control. The development of a practical solution for the autonomous landing of an aircraft on a moving platform thus constitutes the main goal of this thesis. Therefore, theoretical investigations are combined with real experiments for which a special setup is developed and implemented. Two different landing system variants are developed — the safety-based landing system is robust to inter-vehicle communication delays and adheres to established landing procedures, while reducing system complexity. The performance-based landing system uses optimized vehicle trajectories and bilateral position synchronization to maximize landing performance in terms of used runway, but suffers from time delay-dependent stability. An extended passivity-based stabilizing controller was implemented to cope with this issue. Both strategies impose functional requirements on the individual vehicle controllers, which imply independent controllability of the translational degrees of freedom. Energy-based flight control is utilized to provide such functionality for the aircraft. The developed landing systems are analyzed in simulation and performance bounds are determined by means of repeated random sampling. The safety-based controller was found to provide satisfactory landing performance while providing higher operational safety, and lower implementation and certification effort. The performance-based controller is promising for applications with limited runway length. The performance benefits were found to be less pronounced for slower ground vehicle dynamics. Given the slow dynamics of the demonstrator setup, the safety-based approach was chosen for first landing experiments. The landing system was validated in a number of successful landing trials, which to the author’s best knowledge was the first time such technology was demonstrated on the given scale, worldwide. Ultimately, the proposed concept offers decisive benefits and constitutes a promising strategy for future aircraft landing solutions

    A convex-programming-based guidance algorithm to capture a tumbling object on orbit using a spacecraft equipped with a robotic manipulator

    Get PDF
    An algorithm to guide the capture of a tumbling resident space object by a spacecraft equipped with a robotic manipulator is presented. A solution to the guidance problem is found by solving a collection of convex programming problems. As convex programming offers deterministic convergence properties, this algorithm is suitable for onboard implementation and real-time use. A set of hardware-in-the-loop experiments substantiates this claim. To cast the guidance problem as a collection of convex programming problems, the capture maneuver is divided into two simultaneously occurring sub-maneuvers: a system-wide translation and an internal re-configuration. These two sub-maneuvers are optimized in two consecutive steps. A sequential convex programming procedure, overcoming the presence of non-convex constraints and nonlinear dynamics, is used on both optimization steps. A proof of convergence is offered for the system-wide translation, while a set of structured heuristics—trust regions—is used for the optimization of the internal re-configuration sub-maneuver. Videos of the numerically simulated and experimentally demonstrated maneuvers are included as supplementary material

    Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft

    Get PDF
    The post-911 environment has punctuated the force-multiplying capabilities that Remotely Piloted Aircraft (RPA) provides combatant commanders at all echelons on the battlefield. Not only have unmanned aircraft systems made near-revolutionary impacts on the battlefield, their utility and proliferation in law enforcement, homeland security, humanitarian operations, and commercial applications have likewise increased at a rapid rate. As such, under the Federal Aviation Administration (FAA) Modernization and Reform Act of 2012, the United States Congress tasked the FAA to provide for the safe integration of civil unmanned aircraft systems into the national airspace system (NAS) as soon as practicable, but not later than September 30, 2015. However, a necessary entrance criterion to operate RPAs in the NAS is the ability to Sense and Avoid (SAA) both cooperative and noncooperative air traffic to attain a target level of safety as a traditional manned aircraft platform. The goal of this research effort is twofold: First, develop techniques for calculating optimal avoidance trajectories, and second, develop techniques for estimating an intruder aircraft\u27s trajectory in a stochastic environment. This dissertation describes the optimal control problem associated with SAA and uses a direct orthogonal collocation method to solve this problem and then analyzes these results for different collision avoidance scenarios

    Virtual Structures Based Autonomous Formation Flying Control for Small Satellites

    Get PDF
    Many space organizations have a growing need to fly several small satellites close together in order to collect and correlate data from different satellite sensors. To do this requires teams of engineers monitoring the satellites orbits and planning maneuvers for the satellites every time the satellite leaves its desired trajectory or formation. This task of maintaining the satellites orbits quickly becomes an arduous and expensive feat for satellite operations centers. This research develops and analyzes algorithms that allow satellites to autonomously control their orbit and formation without human intervention. This goal is accomplished by developing and evaluating a decentralized, optimization-based control that can be used for autonomous formation flight of small satellites. To do this, virtual structures, model predictive control, and switching surfaces are used. An optimized guidance trajectory is also develop to reduce fuel usage of the system. The Hill-Clohessy-Wiltshire equations and the D\u27Amico relative orbital elements are used to describe the relative motion of the satellites. And a performance comparison of the L1, L2, and L∞ norms is completed as part of this work. The virtual structure, MPC based framework combined with the switching surfaces enables a scalable method that allows satellites to maneuver safely within their formation, while also minimizing fuel usage

    Guidance and control for defense systems against ballistic threats

    Get PDF
    A defense system against ballistic threat is a very complex system from the engineering point of view. It involves different kinds of subsystems and, at the same time, it presents very strict requirements. Technology evolution drives the need of constantly upgrading system’s capabilities. The guidance and control fields are two of the areas with the best progress possibilities. This thesis deals with the guidance and control problems involved in a defense system against ballistic threats. This study was undertaken by analyzing the mission of an intercontinental ballistic missile. Trajectory reconstruction from radar and satellite measurements was carried out with an estimation algorithm for nonlinear systems. Knowing the trajectory is a prerequisite for intercepting the ballistic missile. Interception takes place thanks to a dedicated tactical missile. The guidance and control of this missile were also studied in this work. Particular attention was paid on the estimation of engagement’s variables inside the homing loop. Interceptor missiles are usually equipped with a seeker that provides the angle under which the interceptor sees its target. This single measurement does not guarantee the observability of the variables required by advanced guidance laws such as APN, OGL, or differential games-based laws. A new guidance strategy was proposed, that solves the bad observability problems and returns satisfactory engagement performances. The thesis is concluded by a study of the interceptor most suitable aerodynamic configuration in order to implement the proposed strategy, and by the relative autopilot design. The autopilot implements the lateral acceleration commands from the guidance system. The design was carried out with linear control techniques, considering requirements on the rising time, actuators maximum effort, and response to a bang-bang guidance command. The analysis of the proposed solutions was carried on by means of numerical simulations, developed for each single case-study

    Intelligent Transportation Systems, Hybrid Electric Vehicles, Powertrain Control, Cooperative Adaptive Cruise Control, Model Predictive Control

    Get PDF
    Information obtainable from Intelligent Transportation Systems (ITS) provides the possibility of improving the safety and efficiency of vehicles at different levels. In particular, such information has the potential to be utilized for prediction of driving conditions and traffic flow, which allows us to improve the performance of the control systems in different vehicular applications, such as Hybrid Electric Vehicles (HEVs) powertrain control and Cooperative Adaptive Cruise Control (CACC). In the first part of this work, we study the design of an MPC controller for a Cooperative Adaptive Cruise Control (CACC) system, which is an automated application that provides the drivers with extra benefits, such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as interfering vehicles cutting-into the CACC platoons or hard braking by leading cars. To address this problem, we first propose a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme. Then, the predicted trajectory of each vehicle in the adjacent lanes is used to estimate the probability of that vehicle cutting-into the CACC platoon. To consider the calculated probability in control system decisions, a Stochastic Model Predictive Controller (SMPC) needs to be designed which incorporates this cut-in probability, and enhances the reaction against the detected dangerous cut-in maneuver. However, in this work, we propose an alternative way of solving this problem. We convert the SMPC problem into modeling the CACC as a Stochastic Hybrid System (SHS) while we still use a deterministic MPC controller running in the only state of the SHS model. Finally, we find the conditions under which the designed deterministic controller is stable and feasible for the proposed SHS model of the CACC platoon. In the second part of this work, we propose to improve the performance of one of the most promising realtime powertrain control strategies, called Adaptive Equivalent Consumption Minimization Strategy (AECMS), using predicted driving conditions. In this part, two different real-time powertrain control strategies are proposed for HEVs. The first proposed method, including three different variations, introduces an adjustment factor for the cost of using electrical energy (equivalent factor) in AECMS. The factor is proportional to the predicted energy requirements of the vehicle, regenerative braking energy, and the cost of battery charging and discharging in a finite time window. Simulation results using detailed vehicle powertrain models illustrate that the proposed control strategies improve the performance of AECMS in terms of fuel economy by 4\%. Finally, we integrate the recent development in reinforcement learning to design a novel multi-level power distribution control. The proposed controller reacts in two levels, namely high-level and low-level control. The high-level control decision estimates the most probable driving profile matched to the current (and near future) state of the vehicle. Then, the corresponding low-level controller of the selected profile is utilized to distribute the requested power between Electric Motor (EM) and Internal Combustion Engine (ICE). This is important because there is no other prior work addressing this problem using a controller which can adjust its decision to the driving pattern. We proposed to use two reinforcement learning agents in two levels of abstraction. The first agent, selects the most optimal low-level controller (second agent) based on the overall pattern of the drive cycle in the near past and future, i.e., urban, highway and harsh. Then, the selected agent by the high-level controller (first agent) decides how to distribute the demanded power between the EM and ICE. We found that by carefully designing a training scheme, it is possible to effectively improve the performance of this data-driven controller. Simulation results show up to 6\% improvement in fuel economy compared to the AECMS
    corecore