13 research outputs found

    Uticaj nesavršene ekstrakcije referentnog nosioca na performanse diverziti prijemnika digitalno fazno modulisanih signala u kanalu sa fedingom

    Get PDF
    The results of the research, presented in this dissertation, refer to the analysis of imperfect reference signal recovery influence on performance of digital systems with BPSK and QPSK modulation and diversity at the reception applied. In order to make the content easy for understanding, the theoretical basics, necessary for calculations performed in the following chapters, has been presented at the beginning. In the analysis of the imperfect reference signalrecovery influence on the performance of single channel systems for BPSK and QPSK signal detection two cases have been considered. The analysis has been performed for Hoyt and composite Kg fading channel. ..

    Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

    Get PDF
    Unsere moderne Gesellschaft ist Zeuge eines fundamentalen Wandels in der Art und Weise wie wir mit Technologie interagieren. Geräte werden zunehmend intelligenter - sie verfügen über mehr und mehr Rechenleistung und häufiger über eigene Kommunikationsschnittstellen. Das beginnt bei einfachen Haushaltsgeräten und reicht über Transportmittel bis zu großen überregionalen Systemen wie etwa dem Stromnetz. Die Erfassung, die Verarbeitung und der Austausch digitaler Informationen gewinnt daher immer mehr an Bedeutung. Die Tatsache, dass ein wachsender Anteil der Geräte heutzutage mobil und deshalb batteriebetrieben ist, begründet den Anspruch, digitale Signalverarbeitungsalgorithmen besonders effizient zu gestalten. Dies kommt auch dem Wunsch nach einer Echtzeitverarbeitung der großen anfallenden Datenmengen zugute. Die vorliegende Arbeit demonstriert Methoden zum Finden effizienter algebraischer Lösungen für eine Vielzahl von Anwendungen mehrkanaliger digitaler Signalverarbeitung. Solche Ansätze liefern nicht immer unbedingt die bestmögliche Lösung, kommen dieser jedoch häufig recht nahe und sind gleichzeitig bedeutend einfacher zu beschreiben und umzusetzen. Die einfache Beschreibungsform ermöglicht eine tiefgehende Analyse ihrer Leistungsfähigkeit, was für den Entwurf eines robusten und zuverlässigen Systems unabdingbar ist. Die Tatsache, dass sie nur gebräuchliche algebraische Hilfsmittel benötigen, erlaubt ihre direkte und zügige Umsetzung und den Test unter realen Bedingungen. Diese Grundidee wird anhand von drei verschiedenen Anwendungsgebieten demonstriert. Zunächst wird ein semi-algebraisches Framework zur Berechnung der kanonisch polyadischen (CP) Zerlegung mehrdimensionaler Signale vorgestellt. Dabei handelt es sich um ein sehr grundlegendes Werkzeug der multilinearen Algebra mit einem breiten Anwendungsspektrum von Mobilkommunikation über Chemie bis zur Bildverarbeitung. Verglichen mit existierenden iterativen Lösungsverfahren bietet das neue Framework die Möglichkeit, den Rechenaufwand und damit die Güte der erzielten Lösung zu steuern. Es ist außerdem weniger anfällig gegen eine schlechte Konditionierung der Ausgangsdaten. Das zweite Gebiet, das in der Arbeit besprochen wird, ist die unterraumbasierte hochauflösende Parameterschätzung für mehrdimensionale Signale, mit Anwendungsgebieten im RADAR, der Modellierung von Wellenausbreitung, oder bildgebenden Verfahren in der Medizin. Es wird gezeigt, dass sich derartige mehrdimensionale Signale mit Tensoren darstellen lassen. Dies erlaubt eine natürlichere Beschreibung und eine bessere Ausnutzung ihrer Struktur als das mit Matrizen möglich ist. Basierend auf dieser Idee entwickeln wir eine tensor-basierte Schätzung des Signalraums, welche genutzt werden kann um beliebige existierende Matrix-basierte Verfahren zu verbessern. Dies wird im Anschluss exemplarisch am Beispiel der ESPRIT-artigen Verfahren gezeigt, für die verbesserte Versionen vorgeschlagen werden, die die mehrdimensionale Struktur der Daten (Tensor-ESPRIT), nichzirkuläre Quellsymbole (NC ESPRIT), sowie beides gleichzeitig (NC Tensor-ESPRIT) ausnutzen. Um die endgültige Schätzgenauigkeit objektiv einschätzen zu können wird dann ein Framework für die analytische Beschreibung der Leistungsfähigkeit beliebiger ESPRIT-artiger Algorithmen diskutiert. Verglichen mit existierenden analytischen Ausdrücken ist unser Ansatz allgemeiner, da keine Annahmen über die statistische Verteilung von Nutzsignal und Rauschen benötigt werden und die Anzahl der zur Verfügung stehenden Schnappschüsse beliebig klein sein kann. Dies führt auf vereinfachte Ausdrücke für den mittleren quadratischen Schätzfehler, die Schlussfolgerungen über die Effizienz der Verfahren unter verschiedenen Bedingungen zulassen. Das dritte Anwendungsgebiet ist der bidirektionale Datenaustausch mit Hilfe von Relay-Stationen. Insbesondere liegt hier der Fokus auf Zwei-Wege-Relaying mit Hilfe von Amplify-and-Forward-Relays mit mehreren Antennen, da dieser Ansatz ein besonders gutes Kosten-Nutzen-Verhältnis verspricht. Es wird gezeigt, dass sich die nötige Kanalkenntnis mit einem einfachen algebraischen Tensor-basierten Schätzverfahren gewinnen lässt. Außerdem werden Verfahren zum Finden einer günstigen Relay-Verstärkungs-Strategie diskutiert. Bestehende Ansätze basieren entweder auf komplexen numerischen Optimierungsverfahren oder auf Ad-Hoc-Ansätzen die keine zufriedenstellende Bitfehlerrate oder Summenrate liefern. Deshalb schlagen wir algebraische Ansätze zum Finden der Relayverstärkungsmatrix vor, die von relevanten Systemmetriken inspiriert sind und doch einfach zu berechnen sind. Wir zeigen das algebraische ANOMAX-Verfahren zum Erreichen einer niedrigen Bitfehlerrate und seine Modifikation RR-ANOMAX zum Erreichen einer hohen Summenrate. Für den Spezialfall, in dem die Endgeräte nur eine Antenne verwenden, leiten wir eine semi-algebraische Lösung zum Finden der Summenraten-optimalen Strategie (RAGES) her. Anhand von numerischen Simulationen wird die Leistungsfähigkeit dieser Verfahren bezüglich Bitfehlerrate und erreichbarer Datenrate bewertet und ihre Effektivität gezeigt.Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable systems. The fact that they rely on standard algebraic methods only allows their rapid implementation and test under real-world conditions. We demonstrate this concept in three different application areas. First, we present a semi-algebraic framework to compute the Canonical Polyadic (CP) decompositions of multidimensional signals, a very fundamental tool in multilinear algebra with applications ranging from chemistry over communications to image compression. Compared to state-of-the art iterative solutions, our framework offers a flexible control of the complexity-accuracy trade-off and is less sensitive to badly conditioned data. The second application area is multidimensional subspace-based high-resolution parameter estimation with applications in RADAR, wave propagation modeling, or biomedical imaging. We demonstrate that multidimensional signals can be represented by tensors, providing a convenient description and allowing to exploit the multidimensional structure in a better way than using matrices only. Based on this idea, we introduce the tensor-based subspace estimate which can be applied to enhance existing matrix-based parameter estimation schemes significantly. We demonstrate the enhancements by choosing the family of ESPRIT-type algorithms as an example and introducing enhanced versions that exploit the multidimensional structure (Tensor-ESPRIT), non-circular source amplitudes (NC ESPRIT), and both jointly (NC Tensor-ESPRIT). To objectively judge the resulting estimation accuracy, we derive a framework for the analytical performance assessment of arbitrary ESPRIT-type algorithms by virtue of an asymptotical first order perturbation expansion. Our results are more general than existing analytical results since we do not need any assumptions about the distribution of the desired signal and the noise and we do not require the number of samples to be large. At the end, we obtain simplified expressions for the mean square estimation error that provide insights into efficiency of the methods under various conditions. The third application area is bidirectional relay-assisted communications. Due to its particularly low complexity and its efficient use of the radio resources we choose two-way relaying with a MIMO amplify and forward relay. We demonstrate that the required channel knowledge can be obtained by a simple algebraic tensor-based channel estimation scheme. We also discuss the design of the relay amplification matrix in such a setting. Existing approaches are either based on complicated numerical optimization procedures or on ad-hoc solutions that to not perform well in terms of the bit error rate or the sum-rate. Therefore, we propose algebraic solutions that are inspired by these performance metrics and therefore perform well while being easy to compute. For the MIMO case, we introduce the algebraic norm maximizing (ANOMAX) scheme, which achieves a very low bit error rate, and its extension Rank-Restored ANOMAX (RR-ANOMAX) that achieves a sum-rate close to an upper bound. Moreover, for the special case of single antenna terminals we derive the semi-algebraic RAGES scheme which finds the sum-rate optimal relay amplification matrix based on generalized eigenvectors. Numerical simulations evaluate the resulting system performance in terms of bit error rate and system sum rate which demonstrates the effectiveness of the proposed algebraic solutions

    Hybrid optical fiber-wireless communication to support tactile internet

    Get PDF
    5G technologies are systems that will set to change the way people, devices and machines connect. This generation of mobile services provide connection in just one click. The advanced 5G infrastructure, defined as “ubiquitous ultra-broadband network supporting future Internet”, represents a revolution in the telecommunications field. It will enable new secure and reliable services to everyone and everything with ultra-low latency. “Full Immersive Experience”, enriched by “Context Information” and “Anything as a Service” are the main drivers for a substantial adoption of the fifth generation networks [1]. The technical challenges that must be taken into account in the design of the 5G system are many and unprecedented. Therefore,5G is expected to be about 10 times faster than LTE-4G, in addition, it is projected that this network will have100-1000 times higher system capacity, user data rates in the order of Gbps everywhere, 10-100 higher number of connected devices per area, latency in the order of 1 millisecond, and 10 times longer battery life for devices. Due to all these technological changes, for years, researchers, suppliers and manufacturers around the world have studied this new network. In order to transform the user's wireless experience and be able to offer fast generalized connectivity anytime, anywhere, to any device.[2]. All this requires an enabler in the new approach of radio access networks, which could be hybrid optical Fiber-Wireless communications. “Photonics technology has been recognized by the European Union as a Key Enabling Technology (KET), which is a technology that enables a market, many times larger than the market of technology itself”. Photonic techniques have become key enablers to unlock future broadband wireless communications with terabit data rates in order to support the current trends of mobile data traffic[3]. The aim of this thesis is to conceive experimentally and validate 1 millisecond latency hybrid optical Fiber-Wireless access links support for tactile Internet taking into account the system requirements. For this purpose, first a review about the implementation of high-speed data links at 75-110 GHz band with low latency was made. Likewise, this work summarizes the components of hybrid optical Fiber-Wireless communication in W- Band. Second, measurements of the delay contribution from individual elements in the W -Band hybrid system were made. In addition, the main contribution was to develop a procedure for measuring latency physically using software defined radio (SDR) and estimating the overall system latency. In this procedure, potential sources of delay can be identified in current high-data-rate hybrid optical-RF communication systems. After knowing how to measure latency in a hybrid optical Fiber-Wireless system, the following objectives were developed: to test an appropriate multiplexing scheme such as Orthogonal Frequency Division Multiplexing (OFDM), and Generalized Frequency Division Multiplexing (GFDM), to achieve the lowest latency with improved performance; and to implement WDM (Wavelength Division Multiplexing) to achieve the required low latency.Resumen: Las tecnologías 5G son sistemas de generación de servicios móviles configurados para cambiar la forma en que las personas, los dispositivos y las máquinas se conectan. La infraestructura 5G está definida como una red ubicua de banda ultra-ancha que soportará Internet en el futuro, dicha red representa una revolución en el campo de las telecomunicaciones. Permitirá eficientemente nuevos servicios ultra-confiables, rápidos y seguros, preservando la privacidad y acelerando los servicios críticos para todos y para cada cosa. Estas redes son la evolución del Internet de las cosas, en donde cada una de ellas es tratada como un objeto cognitivo formando sistemas cibernéticos (CPS). La "experiencia de inmersión total", enriquecida con "información de contexto" y "todo como un servicio" son los principales impulsores para una adopción masiva de los nuevos componentes de ésta tecnología y su aceptación del mercado [1]. Se espera que 5G sea aproximadamente 10 veces más rápido que 4G LTE. Por lo tanto, los desafíos técnicos que deben abordarse en el diseño del sistema 5G son muchos y sin precedentes. Actualmente hay varias actividades en todo el mundo para capturar las aplicaciones y los requisitos para 5G, algunas empresas proveedoras de servicio y fabricantes incluso ya han realizado pruebas para la implementación de dichas redes. Algunos de los principales requisitos que demandan estas redes se pueden resumir en: 100-1000 veces más capacidad del sistema, tasas de datos de usuario en el orden de Gbps en todas partes, latencia en el orden de 1 milisegundo, 10-100 veces mayor número de dispositivos conectados por área, 10 veces más duración de la batería para dispositivos. Estos requisitos transformarán dramáticamente la experiencia inalámbrica de un usuario en un sistema 5G al ofrecer conectividad generalizada rápida en cualquier momento, en cualquier lugar, a cualquier dispositivo [2]. Todo esto requiere un habilitador en el nuevo enfoque de las redes de acceso por radio, que podrían ser comunicaciones híbridas de fibra óptica y transmisiones inalámbricas vía radio. La fotónica por su parte ha sido reconocida por la Unión Europea como una Tecnología Clave Habilitadora (KET), una tecnología que permite un mercado que es muchas veces más grande que el mercado de la tecnología en sí. Las técnicas fotónicas combinadas con la generación de microondas en lo que se conoce en su término en inglés como microwave-photonics se han convertido en habilitadores clave para desbloquear futuras comunicaciones inalámbricas de banda ancha con tasas de datos de terabit a fin de soportar las tendencias actuales del tráfico de datos móviles [3]. El objetivo de esta tesis es concebir experimentalmente y validar enlaces de acceso híbridos de fibra óptica-radio, cuya latencia sea de 1 milisegundo con el fin de soportar Internet táctil, el cual es una aplicación de 5G, teniendo en cuenta los requisitos del sistema. Para ello, primero se realizó una investigación sobre la implementación de enlaces de datos con redes híbridas fibra óptica-radio en la banda de 75-110 GHz con baja latencia. Con esto, se analizaron los componentes de la comunicación híbrida fibra ópticaradio en la banda W. En segundo lugar, se realizaron mediciones de los retardos que se generan en cada uno de los elementos en el sistema híbrido de banda W, haciendo la estimación de la latencia general del sistema e identificando fuentes potenciales de demora en los sistemas híbridos de comunicación óptica-RF de alta velocidad de datos. La principal contribución de este trabajo fue el desarrollo de un procedimiento para medir la latencia utilizando radio definida por software (SDR), además de introducir estos sistemas en los enlaces híbridos fibra óptica-radio. Una vez conocido como medir la latencia en un sistema híbrido de fibra óptica-radio, los siguientes objetivos que se desarrollaron fueron: probar un esquema de multiplexación apropiado, como la multiplexación por división de frecuencia ortogonal (OFDM) y la multiplexación por división de frecuencia generalizada (GFDM), para lograr una latencia más baja. A su vez, implementar Multiplexación por división de longitud de onda (WDM) para conocer la latencia y la confiabilidad en cuanto a tasa de error de bits variando la multiplexacion eléctrica y óptica.Doctorad

    Technologies to improve the performance of wireless sensor networks in high-traffic applications

    Get PDF
    The expansion of wireless sensor networks to advanced areas, including structure health monitoring, multimedia surveillance, and health care monitoring applications, has resulted in new and complex problems. Traditional sensor systems are designed and optimised for extremely low traffic loads. However, it has been witnessed that network performance drops rapidly with the higher traffic loads common in advanced applications. In this thesis, we examine the system characteristics and new system requirements of these advanced sensor network applications. Based on this analysis, we propose an improved architecture for wireless sensor systems to increase the network performance while maintaining compatibility with the essential WSN requirements: low power, low cost, and distributed scalability. We propose a modified architecture deriving from the IEEE 802.15.4 standard, which is shown to significantly increase the network performance in applications generating increased data loads. This is achieved by introducing the possibility of independently allocating the sub-carriers in a distributed manner. As a result, the overall efficiency of the channel contention mechanism will be increased to deliver higher throughput with lower energy consumption. Additionally, we develop the concept of increasing the data transmission efficiency by adapting the spreading code length to the wireless environment. Such a modification will not only be able to deliver higher throughput but also maintain a reliable wireless link in the harsh RF environment. Finally, we propose the use of the battery recovery effect to increase the power efficiency of the system under heavy traffic load conditions. These three innovations minimise the contention window period while maximising the capacity of the available channel, which is shown to increase network performance in terms of energy efficiency, throughput and latency. The proposed system is shown to be backwards compatible and able to satisfy both traditional and advanced applications and is particularly suitable for deployment in harsh RF environments. Experiments and analytic techniques have been described and developed to produce performance metrics for all the proposed techniques

    Low Power Circuit Design in Sustainable Self Powered Systems for IoT Applications

    Get PDF
    The Internet-of-Things (IoT) network is being vigorously pushed forward from many fronts in diverse research communities. Many problems are still there to be solved, and challenges are found among its many levels of abstraction. In this thesis we give an overview of recent developments in circuit design for ultra-low power transceivers and energy harvesting management units for the IoT. The first part of the dissertation conducts a study of energy harvesting interfaces and optimizing power extraction, followed by power management for energy storage and supply regulation. we give an overview of the recent developments in circuit design for ultra-low power management units, focusing mainly in the architectures and techniques required for energy harvesting from multiple heterogeneous sources. Three projects are presented in this area to reach a solution that provides reliable continuous operation for IoT sensor nodes in the presence of one or more natural energy sources to harvest from. The second part focuses on wireless transmission, To reduce the power consumption and boost the Tx energy efficiency, a novel delay cell exploiting current reuse is used in a ring-oscillator employed as the local oscillator generator scheme. In combination with an edge-combiner power amplifier, the Tx showed a measured energy efficiency of 0.2 nJ=bit and a normalized energy efficiency of 3.1 nJ=bit:mW when operating at output power levels up to -10 dBm and data rates of 3 Mbps
    corecore