534 research outputs found

    Absolute surface topography measurement with polarisation sensitive coherence scanning interferometry

    Get PDF
    Traditionally, surface topography measurement was in the domain of quality control of engineering parts. With the advancement of manufacturing technology and affordable computational costs, different types of surfaces are produced with varied shapes and surface textures. These pose significant measurement problems, therefore, surface topography research is gaining momentum to achieve a better control of the surface. Coherence scanning interferometry (CSI) is one of the most common techniques used for measurement of surface topography. It is preferred over tactile and other non-contact techniques since it provides fast and accurate measurement with high vertical (~ 1 nm) and lateral (~1 μm) resolutions over larger areas without any damage to the surface. Essentially, CSI is treated as one dimensional (1D) superposition of the light waves from an object and a reference that generates a three dimensional (3D) interferogram. Secondly, despite the advantages, there is no standard configuration of CSI that can provide absolute surface topography measurement of an engineering part with multiple materials. An effective solution to this problem will be particularly useful in the field of semiconductor and bio-related industries where chips and instruments are made of many materials. In this Thesis, first, the CSI technique is analysed in terms of a wider theoretical framework of 3D linear filtering technique which shows the similarities among other seemingly disparate techniques such as confocal and optical coherence tomography. Due consideration to the spectral characteristic of the source and the effect of numerical aperture are given and important parameters such as vertical and lateral resolutions are computed to compare this theory with standard analysis methods. Additionally, it is shown that the 3D fringe pattern can be considered to be a superposition of a reference field and the scattered field from the top foil-like layer on the top the object. The scattered field from this foil object is dependent on the normal Fresnel reflection coefficients. Therefore, it explains the phase offset and the proportional height offset introduced by different materials, especially, metals. In an object, where multiple materials are present, each material introduces different phase to the fringe pattern and therefore, the surface topography of the entire object is altered. To overcome this problem, the optical polarising properties of the material are exploited. A novel configuration of polarisation sensitive CSI is presented where interferograms with orthogonal circular polarisations are recorded and analysed. The configuration, initially, needs to be calibrated with a material and after that at each point on the object, the refractive index and height offset can be calculated. Therefore, it can be dually used to identify unknown materials present on the object and also to compensate for the height offset introduced by each material to produce absolute surface topography of the entire object. The configuration provides good agreement with ellipsometric results for metals. Additionally, it retains the advantages of high vertical and lateral resolution same as other standard coherence scanning interferometers

    Conceptual design study for a teleoperator visual system, phase 2

    Get PDF
    An analysis of the concept for the hybrid stereo-monoscopic television visual system is reported. The visual concept is described along with the following subsystems: illumination, deployment/articulation, telecommunications, visual displays, and the controls and display station

    Advanced Earth Observation System Instrumentation Study (AEOSIS)

    Get PDF
    The feasibility, practicality, and cost are investigated for establishing a national system or grid of artificial landmarks suitable for automated (near real time) recognition in the multispectral scanner imagery data from an earth observation satellite (EOS). The intended use of such landmarks, for orbit determination and improved mapping accuracy is reviewed. The desirability of using xenon searchlight landmarks for this purpose is explored theoretically and by means of experimental results obtained with LANDSAT 1 and LANDSAT 2. These results are used, in conjunction with the demonstrated efficiency of an automated detection scheme, to determine the size and cost of a xenon searchlight that would be suitable for an EOS Searchlight Landmark Station (SLS), and to facilitate the development of a conceptual design for an automated and environmentally protected EOS SLS

    Augmenting depth estimation from deep convolutional neural network using multi-spectral photometric stereo

    Get PDF

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument
    corecore