265 research outputs found

    Space-Time Signal Design for Multilevel Polar Coding in Slow Fading Broadcast Channels

    Full text link
    Slow fading broadcast channels can model a wide range of applications in wireless networks. Due to delay requirements and the unavailability of the channel state information at the transmitter (CSIT), these channels for many applications are non-ergodic. The appropriate measure for designing signals in non-ergodic channels is the outage probability. In this paper, we provide a method to optimize STBCs based on the outage probability at moderate SNRs. Multilevel polar coded-modulation is a new class of coded-modulation techniques that benefits from low complexity decoders and simple rate matching. In this paper, we derive the outage optimality condition for multistage decoding and propose a rule for determining component code rates. We also derive an upper bound on the outage probability of STBCs for designing the set-partitioning-based labelling. Finally, due to the optimality of the outage-minimized STBCs for long codes, we introduce a novel method for the joint optimization of short-to-moderate length polar codes and STBCs

    Secrecy outage analysis for Alamouti space-time block coded non-orthogonal multiple access

    Get PDF
    This letter proposed a novel transmission technique for physical layer security by applying the Alamouti Space-Time Block Coded Non-orthogonal Multiple Access (STBC-NOMA) scheme. The secure outage performance under both perfect successive interference cancellation (pSIC) and imperfect successive interference cancellation (ipSIC) are investigated. In particular, novel exact and asymptotic expressions of secrecy outage probability are derived. Numerical and theoretical results are presented to corroborate the derived expressions and to demonstrate the superiority of STBC-NOMA and its ability to enhance the secrecy outage performance compared to conventional NOMA

    Exploitation of quasi-orthogonal space time block codes in virtual antenna arrays: part I - theoretical capacity and throughput gains

    Get PDF
    A full-rate and full-diversity closed-loop quasi-orthogonal space time block coding scheme pioneered by Toker, Lambotharan and Chambers is proposed for application in virtual antenna arrays. The theoretical capacity and throughput gains are evaluated as a function of signal-to-noise ratio. It is shown that the scheme has particular benefits in both ergodic and non-ergodic channel environments, and outperforms virtual antenna arrays based solely upon conventional orthogonal space time block codes

    Modified quasi-orthogonal space-time block coding in distributed wireless networks

    Get PDF
    Cooperative networks have developed as a useful technique that can achieve the same advantage as multi-input and multi-output (MIMO) wireless systems such as spatial diversity, whilst resolving the difficulties of co-located multiple antennas at individual nodes and avoiding the effect of path-loss and shadowing. Spatial diversity in cooperative networks is known as cooperative diversity, and can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. It enables single-antenna terminals in a wireless relay network to share their antennas to form a virtual antenna array on the basis of their distributed locations. However, there remain technical challenges to maximize the benefit of cooperative communications, e.g. data rate, asynchronous transmission and outage. In this thesis, therefore, firstly, a modified distributed quasi-orthogonal space-time block coding (M-D-QO-STBC) scheme with increased code gain distance (CGD) for one-way and two-way amplify-and-forward wireless relay networks is proposed. This modified code is designed from set partitioning a larger codebook formed from two quasi-orthogonal space time block codes with different signal rotations then the subcodes are combined and pruned to arrive at the modified codebook with the desired rate in order to increase the CGD. Moreover, for higher rate codes the code distance is maximized by using a genetic algorithm to search for the optimum rotation matrix. This scheme has very good performance and significant coding gain over existing codes such as the open-loop and closed-loop QO-STBC schemes. In addition, the topic of outage probability analysis in the context of multi-relay selection from NN available relay nodes for one-way amplify-and-forward cooperative relay networks is considered together with the best relay selection, the NthN^{th} relay selection and best four relay selection in two-way amplify-and-forward cooperative relay networks. The relay selection is performed either on the basis of a max-min strategy or one based on maximizing exact end-to-end signal-to-noise ratio. Furthermore, in this thesis, robust schemes for cooperative relays based on the M-D-QO-STBC scheme for both one-way and two-way asynchronous cooperative relay networks are considered to overcome the issue of a synchronism in wireless cooperative relay networks. In particular, an orthogonal frequency division multiplexing (OFDM) data structure is employed with cyclic prefix (CP) insertion at the source in the one-way cooperative relay network and at the two terminal nodes in the two-way cooperative network to combat the effects of time asynchronism. As such, this technique can effectively cope with the effects of timing errors. Finally, outage probability performance of a proposed amplify-and-forward cooperative cognitive relay network is evaluated and the cognitive relays are assumed to exploit an overlay approach. A closed form expression for the outage probability for multi-relay selection cooperation over Rayleigh frequency flat fading channels is derived for perfect and imperfect spectrum acquisitions. Furthermore, the M-QO-STBC scheme is also proposed for use in wireless cognitive relay networks. MATLAB and Maple software based simulations are employed throughout the thesis to support the analytical results and assess the performance of new algorithms and methods

    Distributed Quasi-Orthogonal Space-Time coding in wireless cooperative relay networks

    Get PDF
    Cooperative diversity provides a new paradigm in robust wireless re- lay networks that leverages Space-Time (ST) processing techniques to combat the effects of fading. Distributing the encoding over multiple relays that potentially observe uncorrelated channels to a destination terminal has demonstrated promising results in extending range, data- rates and transmit power utilization. Specifically, Space Time Block Codes (STBCs) based on orthogonal designs have proven extremely popular at exploiting spatial diversity through simple distributed pro- cessing without channel knowledge at the relaying terminals. This thesis aims at extending further the extensive design and analysis in relay networks based on orthogonal designs in the context of Quasi- Orthogonal Space Time Block Codes (QOSTBCs). The characterization of Quasi-Orthogonal MIMO channels for cooper- ative networks is performed under Ergodic and Non-Ergodic channel conditions. Specific to cooperative diversity, the sub-channels are as- sumed to observe different shadowing conditions as opposed to the traditional co-located communication system. Under Ergodic chan- nel assumptions novel closed-form solutions for cooperative channel capacity under the constraint of distributed-QOSTBC processing are presented. This analysis is extended to yield closed-form approx- imate expressions and their utility is verified through simulations. The effective use of partial feedback to orthogonalize the QOSTBC is examined and significant gains under specific channel conditions are demonstrated. Distributed systems cooperating over the network introduce chal- lenges in synchronization. Without extensive network management it is difficult to synchronize all the nodes participating in the relaying between source and destination terminals. Based on QOSTBC tech- niques simple encoding strategies are introduced that provide compa- rable throughput to schemes under synchronous conditions with neg- ligible overhead in processing throughout the protocol. Both mutli- carrier and single-carrier schemes are developed to enable the flexi- bility to limit Peak-to-Average-Power-Ratio (PAPR) and reduce the Radio Frequency (RF) requirements of the relaying terminals. The insights gained in asynchronous design in flat-fading cooperative channels are then extended to broadband networks over frequency- selective channels where the novel application of QOSTBCs are used in distributed-Space-Time-Frequency (STF) coding. Specifically, cod- ing schemes are presented that extract both spatial and mutli-path diversity offered by the cooperative Multiple-Input Multiple-Output (MIMO) channel. To provide maximum flexibility the proposed schemes are adapted to facilitate both Decode-and-Forward (DF) and Amplify- and-Forward (AF) relaying. In-depth Pairwise-Error-Probability (PEP) analysis provides distinct design specifications which tailor the distributed- STF code to maximize the diversity and coding gain offered under the DF and AF protocols. Numerical simulation are used extensively to confirm the validity of the proposed cooperative schemes. The analytical and numerical re- sults demonstrate the effective use of QOSTBC over orthogonal tech- niques in a wide range of channel conditions
    • …
    corecore