608 research outputs found

    Autonomous ROV inspections of aquaculture net pens using DVL

    Get PDF
    This article presents a method for guiding a remotely operated vehicle (ROV) to autonomously traverse an aquaculture net pen. The method is based on measurements from a Doppler velocity log (DVL) and uses the measured length of the DVL beam vectors to approximate the geometry of a local region of the net pen in front of the ROV. The ROV position and orientation relative to this net pen approximation are used as inputs to a nonlinear guidance law. The guidance law is based upon the line-of-sight (LOS) guidance law. By utilizing that an ROV is fully actuated in the horizontal plane, the crosstrack error is minimized independently of the ROV heading. A Lyapunov analysis of the closed-loop system with this guidance law shows that the ROV is able to follow a continuous path in the presence of a constant irrotational ocean current. Finally, results from simulations and experiments demonstrating the performance of the net pen approximation and control system are presented.acceptedVersio

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Autonomous surveillance for biosecurity

    Full text link
    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance.Comment: 26 pages, Trends in Biotechnology, 3 March 2015, ISSN 0167-7799, http://dx.doi.org/10.1016/j.tibtech.2015.01.003. (http://www.sciencedirect.com/science/article/pii/S0167779915000190

    Localization, Mapping and SLAM in Marine and Underwater Environments

    Get PDF
    The use of robots in marine and underwater applications is growing rapidly. These applications share the common requirement of modeling the environment and estimating the robots’ pose. Although there are several mapping, SLAM, target detection and localization methods, marine and underwater environments have several challenging characteristics, such as poor visibility, water currents, communication issues, sonar inaccuracies or unstructured environments, that have to be considered. The purpose of this Special Issue is to present the current research trends in the topics of underwater localization, mapping, SLAM, and target detection and localization. To this end, we have collected seven articles from leading researchers in the field, and present the different approaches and methods currently being investigated to improve the performance of underwater robots

    Control of Autonomous Underwater Vehicles

    Get PDF
    In this thesis an overview of Autonomous Underwater Vehicles (AUV) is presented which covers the advancements in AUV technology in last two decades, different components of AUV and the applications of AUVs. A glimpse on AUV research in India is presented. A nonlinear model of AUV is obtained through kinematics and dynamics equation which is linearized about an operating point to get linearized pitch & depth plane model. A two loop controller (PI control) is used to control the pitch and in turn the depth of the AUV. After having developed, simulated and analyzed the pitch and depth controller for a single AUV, we focus our attention towards developing formation control of three AUVs. The formation control for multiple Autonomous Underwater Vehicles (AUVs) is considered in spatial motions.The objective is to drive a leader AUV along a desired trajectory, and make the follower AUVs keep a desired formation with respect to the leader’s configuration in 3-dimensional spaces (leader-follower formation control). Also, an obstacle avoidance scheme, using pitch and depth control, is used to avoid static obstacles in the path of AUV. The results of the above three control objectives such as tracking control of AUV, controller for avoiding obstacles and formation control of multiple AUVs are presented and discussed in the thesis

    Development of Robust Control Strategies for Autonomous Underwater Vehicles

    Get PDF
    The resources of the energy and chemical balance in the ocean sustain mankind in many ways. Therefore, ocean exploration is an essential task that is accomplished by deploying Underwater Vehicles. An Underwater Vehicle with autonomy feature for its navigation and control is called Autonomous Underwater Vehicle (AUV). Among the task handled by an AUV, accurately positioning itself at a desired position with respect to the reference objects is called set-point control. Similarly, tracking of the reference trajectory is also another important task. Battery recharging of AUV, positioning with respect to underwater structure, cable, seabed, tracking of reference trajectory with desired accuracy and speed to avoid collision with the guiding vehicle in the last phase of docking are some significant applications where an AUV needs to perform the above tasks. Parametric uncertainties in AUV dynamics and actuator torque limitation necessitate to design robust control algorithms to achieve motion control objectives in the face of uncertainties. Sliding Mode Controller (SMC), H / μ synthesis, model based PID group controllers are some of the robust controllers which have been applied to AUV. But SMC suffers from less efficient tuning of its switching gains due to model parameters and noisy estimated acceleration states appearing in its control law. In addition, demand of high control effort due to high frequency chattering is another drawback of SMC. Furthermore, real-time implementation of H / μ synthesis controller based on its stability study is restricted due to use of linearly approximated dynamic model of an AUV, which hinders achieving robustness. Moreover, model based PID group controllers suffer from implementation complexities and exhibit poor transient and steady-state performances under parametric uncertainties. On the other hand model free Linear PID (LPID) has inherent problem of narrow convergence region, i.e.it can not ensure convergence of large initial error to zero. Additionally, it suffers from integrator-wind-up and subsequent saturation of actuator during the occurrence of large initial error. But LPID controller has inherent capability to cope up with the uncertainties. In view of addressing the above said problem, this work proposes wind-up free Nonlinear PID with Bounded Integral (BI) and Bounded Derivative (BD) for set-point control and combination of continuous SMC with Nonlinear PID with BI and BD namely SM-N-PID with BI and BD for trajectory tracking. Nonlinear functions are used for all P,I and D controllers (for both of set-point and tracking control) in addition to use of nonlinear tan hyperbolic function in SMC(for tracking only) such that torque demand from the controller can be kept within a limit. A direct Lyapunov analysis is pursued to prove stable motion of AUV. The efficacies of the proposed controllers are compared with other two controllers namely PD and N-PID without BI and BD for set-point control and PD plus Feedforward Compensation (FC) and SM-NPID without BI and BD for tracking control. Multiple AUVs cooperatively performing a mission offers several advantages over a single AUV in a non-cooperative manner; such as reliability and increased work efficiency, etc. Bandwidth limitation in acoustic medium possess challenges in designing cooperative motion control algorithm for multiple AUVs owing to the necessity of communication of sensors and actuator signals among AUVs. In literature, undirected graph based approach is used for control design under communication constraints and thus it is not suitable for large number of AUVs participating in a cooperative motion plan. Formation control is a popular cooperative motion control paradigm. This thesis models the formation as a minimally persistent directed graph and proposes control schemes for maintaining the distance constraints during the course of motion of entire formation. For formation control each AUV uses Sliding Mode Nonlinear PID controller with Bounded Integrator and Bounded Derivative. Direct Lyapunov stability analysis in the framework of input-to-state stability ensures the stable motion of formation while maintaining the desired distance constraints among the AUVs

    Dangerous Inspection & Versatile Exploration Robot (DIVER): Tracking, Monitoring and Assisting Human Divers in Commercial, Environmental and Military Applications

    Get PDF
    The Dangerous Inspection & Versatile Exploration Robot (DIVER) is an underwater remotely operated vehicle designed to assist, track and monitor professional scuba divers in commercial, research and military applications. Integration of custom and commercially available components allowed for hardware development of the ROV. Software development allowed for the integration of OpenTLD tracking algorithm and manual user controls for full autonomous or tele-operational missions. DIVER provides constant communication for the improvement of mission organization and professional diver safety

    Underwater Robots Part I: Current Systems and Problem Pose

    Get PDF
    International audienceThis paper constitutes the first part of a general overview of underwater robotics. The second part is titled: Underwater Robots Part II: existing solutions and open issues
    corecore