3,759 research outputs found

    A Survey on Dataset Distillation: Approaches, Applications and Future Directions

    Full text link
    Dataset distillation is attracting more attention in machine learning as training sets continue to grow and the cost of training state-of-the-art models becomes increasingly high. By synthesizing datasets with high information density, dataset distillation offers a range of potential applications, including support for continual learning, neural architecture search, and privacy protection. Despite recent advances, we lack a holistic understanding of the approaches and applications. Our survey aims to bridge this gap by first proposing a taxonomy of dataset distillation, characterizing existing approaches, and then systematically reviewing the data modalities, and related applications. In addition, we summarize the challenges and discuss future directions for this field of research

    Dataset Distillation: A Comprehensive Review

    Full text link
    Recent success of deep learning is largely attributed to the sheer amount of data used for training deep neural networks.Despite the unprecedented success, the massive data, unfortunately, significantly increases the burden on storage and transmission and further gives rise to a cumbersome model training process. Besides, relying on the raw data for training \emph{per se} yields concerns about privacy and copyright. To alleviate these shortcomings, dataset distillation~(DD), also known as dataset condensation (DC), was introduced and has recently attracted much research attention in the community. Given an original dataset, DD aims to derive a much smaller dataset containing synthetic samples, based on which the trained models yield performance comparable with those trained on the original dataset. In this paper, we give a comprehensive review and summary of recent advances in DD and its application. We first introduce the task formally and propose an overall algorithmic framework followed by all existing DD methods. Next, we provide a systematic taxonomy of current methodologies in this area, and discuss their theoretical interconnections. We also present current challenges in DD through extensive experiments and envision possible directions for future works.Comment: 23 pages, 168 references, 8 figures, under revie

    Dataset Condensation with Distribution Matching

    Get PDF

    A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning

    Full text link
    Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.Comment: 32 page

    Few-Shot Continual Learning for Conditional Generative Adversarial Networks

    Full text link
    In few-shot continual learning for generative models, a target mode must be learned with limited samples without adversely affecting the previously learned modes. In this paper, we propose a new continual learning approach for conditional generative adversarial networks (cGAN) based on a new mode-affinity measure for generative modeling. Our measure is entirely based on the cGAN's discriminator and can identify the existing modes that are most similar to the target. Subsequently, we expand the continual learning model by including the target mode using a weighted label derived from those of the closest modes. To prevent catastrophic forgetting, we first generate labeled data samples using the cGAN's generator, and then train the cGAN model for the target mode while memory replaying with the generated data. Our experimental results demonstrate the efficacy of our approach in improving the generation performance over the baselines and the state-of-the-art approaches for various standard datasets while utilizing fewer training samples
    • …
    corecore