18 research outputs found

    Advanced medical micro-robotics for early diagnosis and therapeutic interventions

    Get PDF
    Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    NASA Technology Applications Team: Commercial applications of aerospace technology

    Get PDF
    The Research Triangle Institute (RTI) is pleased to report the results of NASA contract NASW-4367, 'Operation of a Technology Applications Team'. Through a period of significant change within NASA, the RTI Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. RTI's ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed an implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs; (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology; and (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994

    Microfluidics for Biosensing and Diagnostics

    Get PDF
    Efforts to miniaturize sensing and diagnostic devices and to integrate multiple functions into one device have caused massive growth in the field of microfluidics and this integration is now recognized as an important feature of most new diagnostic approaches. These approaches have and continue to change the field of biosensing and diagnostics. In this Special Issue, we present a small collection of works describing microfluidics with applications in biosensing and diagnostics
    corecore