1,150 research outputs found

    A Tutorial on Learning Human Welder\u27s Behavior: Sensing, Modeling, and Control

    Get PDF
    Human welder\u27s experiences and skills are critical for producing quality welds in manual GTAW process. Learning human welder\u27s behavior can help develop next generation intelligent welding machines and train welders faster. In this tutorial paper, various aspects of mechanizing the welder\u27s intelligence are surveyed, including sensing of the weld pool, modeling of the welder\u27s adjustments and this model-based control approach. Specifically, different sensing methods of the weld pool are reviewed and a novel 3D vision-based sensing system developed at University of Kentucky is introduced. Characterization of the weld pool is performed and human intelligent model is constructed, including an extensive survey on modeling human dynamics and neuro-fuzzy techniques. Closed-loop control experiment results are presented to illustrate the robustness of the model-based intelligent controller despite welding speed disturbance. A foundation is thus established to explore the mechanism and transformation of human welder\u27s intelligence into robotic welding system. Finally future research directions in this field are presented

    Virtualized Welding Based Learning of Human Welder Behaviors for Intelligent Robotic Welding

    Get PDF
    Combining human welder (with intelligence and sensing versatility) and automated welding robots (with precision and consistency) can lead to next generation intelligent welding systems. In this dissertation intelligent welding robots are developed by process modeling / control method and learning the human welder behavior. Weld penetration and 3D weld pool surface are first accurately controlled for an automated Gas Tungsten Arc Welding (GTAW) machine. Closed-form model predictive control (MPC) algorithm is derived for real-time welding applications. Skilled welder response to 3D weld pool surface by adjusting the welding current is then modeled using Adaptive Neuro-Fuzzy Inference System (ANFIS), and compared to the novice welder. Automated welding experiments confirm the effectiveness of the proposed human response model. A virtualized welding system is then developed that enables transferring the human knowledge into a welding robot. The learning of human welder movement (i.e., welding speed) is first realized with Virtual Reality (VR) enhancement using iterative K-means based local ANFIS modeling. As a separate effort, the learning is performed without VR enhancement utilizing a fuzzy classifier to rank the data and only preserve the high ranking “correct” response. The trained supervised ANFIS model is transferred to the welding robot and the performance of the controller is examined. A fuzzy weighting based data fusion approach to combine multiple machine and human intelligent models is proposed. The data fusion model can outperform individual machine-based control algorithm and welder intelligence-based models (with and without VR enhancement). Finally a data-driven approach is proposed to model human welder adjustments in 3D (including welding speed, arc length, and torch orientations). Teleoperated training experiments are conducted in which a human welder tries to adjust the torch movements in 3D based on his observation on the real-time weld pool image feedback. The data is off-line rated by the welder and a welder rating system is synthesized. ANFIS model is then proposed to correlate the 3D weld pool characteristic parameters and welder’s torch movements. A foundation is thus established to rapidly extract human intelligence and transfer such intelligence into welding robots

    Visual Sensing and Defect Detection of Gas Tungsten Arc Welding

    Get PDF
    Weld imperfections or defects such as incomplete penetration and lack of fusion are critical issues that affect the integration of welding components. The molten weld pool geometry is the major source of information related to the formation of these defects. In this dissertation, a new visual sensing system has been designed and set up to obtain weld pool images during GTAW. The weld pool dynamical behavior can be monitored using both active and passive vision method with the interference of arc light in the image significantly reduced through the narrow band pass filter and laser based auxiliary light source.Computer vision algorithms based on passive vision images were developed to measure the 3D weld pool surface geometry in real time. Specifically, a new method based on the reversed electrode image (REI) was developed to calculate weld pool surface height in real time. Meanwhile, the 2D weld pool boundary was extracted with landmarks detection algorithms. The method was verified with bead-on-plate and butt-joint welding experiments.Supervised machine learning was used to develop the capability to predict, in real-time, the incomplete penetration on thin SS304 plate with the key features extracted from weld pool images. An integrated self-adaptive close loop control system consisting the non-contact visual sensor, machine learning based defect predictor, and welding power source was developed for real-time welding penetration control for bead on plate welding. Moreover, the data driven methods were first applied to detect incomplete penetration and LOF in multi-pass U groove welding. New features extracted from reversed electrode image played the most important role to predict these defects. Finally, real time welding experiments were conducted to verify the feasibility of the developed models

    A path to in-space welding and to other in-space metal processing technologies using Space Shuttle small payloads

    Get PDF
    As we venture into space, it becomes necessary to assemble, expand, and repair space-based structures for our housing, research, and manufacturing. The zero gravity-vacuum of space challenges us to employ construction options which are commonplace on Earth. Rockwell International (RI) has begun to undertake the challenge of space-based construction via numerous options, of which one is welding. As of today, RI divisions have developed appropriate resources and technologies to bring space-based welding within our grasp. Further work, specifically in the area of developing space experiments to test RI technology, is required. RI Space Welding Project's achievements to date, from research and development (R&E) efforts in the areas of microgravity, vacuum, intra- / extra- vehicular activity and spinoff technologies, are reviewed. Special emphasis is given to results for G-169's (Get Away Special) microgravity flights aboard a NASA KC-135. Based on these achievements, a path to actual development of a space welding system is proposed with options to explore spinoff in-space metal processing technologies. This path is constructed by following a series of milestone experiments, of which several are to utilize NASA's Shuttle Small Payload Programs. Conceptual designs of the proposed shuttle payload experiments are discussed with application of lessons learned from G-169's design, development, integration, testing, safety approval process, and KC-135 flights

    Development of a real-time ultrasonic sensing system for automated and robotic welding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The implementation of robotic technology into welding processes is made difficult by the inherent process variables of part location, fit up, orientation and repeatability. Considering these aspects, to ensure weld reproducibility consistency and quality, advanced adaptive control techniques are essential. These involve not only the development of adequate sensors for seam tracking and joint recognition but also developments of overall machines with a level of artificial intelligence sufficient for automated welding. The development of such a prototype system which utilizes a manipulator arm, ultrasonic sensors and a transistorised welding power source is outlined. This system incorporates three essential aspects. It locates and tracks the welding seam ensuring correct positioning of the welding head relatively to the joint preparation. Additionally, it monitors the joint profile of the molten weld pool and modifies the relevant heat input parameters ensuring consistent penetration, joint filling and acceptable weld bead shape. Finally, it makes use of both the above information to reconstruct three-dimensional images of the weld pool silhouettes providing in-process inspection capabilities of the welded joints. Welding process control strategies have been incorporated into the system based on quantitative relationships between input parameters and weld bead shape configuration allowing real-time decisions to be made during the process of welding, without the need for operation intervention.British Technology Group (BTG

    In-Line Monitoring of Laser Welding Using a Smart Vision System

    Get PDF
    This paper presents a vision system for the in-line monitoring of laser welding. The system is based on a coaxial optical setup purposely chosen to guarantee robust detection of the joints and optimal acquisition of the melt pool region. Two procedures have been developed: The former focuses on keeping the laser head locked to the joint during the welding; the latter monitors the appearance of the keyhole region. The system feedbacks the joint position to the robot used to move the welding laser and monitors the penetration state of the laser. The goal is to achieve a continuous adaptation of the laser parameters (power., speed and focusing) to guarantee the weld quality. The developed algorithms have been designed to optimize the system performance in terms of the elaboration time and of accuracy and robustness of the detection. The overall architecture follows the Industrial Internet of Things approach, where vision is embedded, edge-based analysis is carried out, actuators are directly driven by the vision system, a latency-free transmission architecture allows interconnection as well as the possibility to remotely control multiple delocalized units

    Neuro-fuzzy control modelling for gas metal arc welding process

    Get PDF
    Weld quality features are difficult or impossible to directly measure and control during welding, therefore indirect methods are necessary. Penetration is the most important geometric feature since in most applications it is the most significant factor affecting joint strength. Observation of penetration is only possible from the back face of the full penetration weld. In all other cases, since direct measurement of depth of penetration is not possible, real time control of penetration in the Gas Metal Arc Welding (GMAW) process by sensing conditions at the top surface of the joint is necessary. This continues to be a major area of interest for automation of the process. The objective of this research has been to develop an on-line intelligent process control model for GMAW, which can monitor and control the welding process. The model uses measurement of the temperature at a point on the surface of the workpiece to predict the depth of penetration being achieved, and to provide feedback for corrective adjustment of welding variables. Neural Network and Fuzzy Logic technologies have been used to achieve a reliable Neuro-Fuzzy control model for GMAW of a typical closed butt joint having 60° Vee edge preparation. The neural network model predicts the surface temperature expected for a set of fixed and adjustable welding variables when a prescribed level of penetration is achieved. This predicted temperature is compared with the actual surface temperature occurring during welding, as measured by an infrared sensor. If there is a difference between the measured temperature and the temperature predicted by the neural network, a fuzzy logic model will recommend changes to the adjustable welding variables necessary to achieve the desired weld penetration. Large scale experiments to obtain data for modelling and for model validation, and various other modelling studies are described. The results are used to establish the relationships between the output surface temperature measurement, welding variables and the corresponding achieved weld quality criteria. The effectiveness of the modelling methodology in dealing with fixed or variable root gap has also been tested. The result shows that the Neuro-fuzzy models are capable of providing control of penetration to an acceptable degree of accuracy, and a potential control response time, using modestly powerful computing hardware, of the order of one hundred milliseconds. This is more than adequate for real time control of GMAW. The application potential for control using these models is significant since, unlike many other top surface monitoring methods, it does not require sensing of the highly transient weld pool shape or surface

    Automatic Control of the Weld Bead Geometry

    Get PDF
    Automatic control of the welding process is complex due to its nonlinear and stochastic behavior and the difficulty for measuring the principal magnitudes and closing the control loop. Fusion welds involve melting and subsequent solidification of one or more materials. The geometry of the weld bead is a good indicator of the melting and solidification process, so its control is essential to obtain quality junctions. Different sensing, modeling, estimation, and control techniques are used to overcome this challenge, but most of the studies are using static single-input/single-output models of the process and focusing on the flat welding position. However, theory and practice demonstrate that dynamic models are the best representation to obtain satisfactory control performance, and multivariable techniques reduce the effect of interactions between control loops in the process. Also, many industrial applications need to control orbital welding. In this chapter, the above topics are discussed

    Sensors and their classification in the fusion weldingtechnology

    Get PDF
    U radu su navedeni i opisani najčešće korišteni senzorski sustavi u suvremenoj zavarivačkoj industriji koja u današnje vrijeme podrazumijeva robotizirane sustave. Predstavljene su podjele senzora u ovisnosti o mehanizmima djelovanja te mjerenim parametrima, a prvenstveno se pozornost posvetila robotiziranim postupcima zavarivanja (MIG/MAG, elektrootporno i lasersko zavarivanje). Ukratko su objašnjeni mehanizmi djelovanja pojedinih senzorskih sustava skupa s njihovim mogućim ograničenjima, prednostima ili specifičnostima.In this paper the most commonly used sensing systems in modern welding industry, which nowadays includes robotic systems, are listed and analysed. According to mechanisms of action and measured parameters, several classifications of sensor systems are presented. MIG/MAG, resistance and laser beam welding processes are the most commonly robotized ones in the industry and therefore special attention is given to them. Several characteristics, limitations and advantages of sensor systems are presented and mechanisms of action are briefly described
    corecore