3,056 research outputs found

    Induction of Interpretable Possibilistic Logic Theories from Relational Data

    Full text link
    The field of Statistical Relational Learning (SRL) is concerned with learning probabilistic models from relational data. Learned SRL models are typically represented using some kind of weighted logical formulas, which make them considerably more interpretable than those obtained by e.g. neural networks. In practice, however, these models are often still difficult to interpret correctly, as they can contain many formulas that interact in non-trivial ways and weights do not always have an intuitive meaning. To address this, we propose a new SRL method which uses possibilistic logic to encode relational models. Learned models are then essentially stratified classical theories, which explicitly encode what can be derived with a given level of certainty. Compared to Markov Logic Networks (MLNs), our method is faster and produces considerably more interpretable models.Comment: Longer version of a paper appearing in IJCAI 201

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Practical probabilistic programming with monads

    Get PDF
    The machine learning community has recently shown a lot of interest in practical probabilistic programming systems that target the problem of Bayesian inference. Such systems come in different forms, but they all express probabilistic models as computational processes using syntax resembling programming languages. In the functional programming community monads are known to offer a convenient and elegant abstraction for programming with probability distributions, but their use is often limited to very simple inference problems. We show that it is possible to use the monad abstraction to construct probabilistic models for machine learning, while still offering good performance of inference in challenging models. We use a GADT as an underlying representation of a probability distribution and apply Sequential Monte Carlo-based methods to achieve efficient inference. We define a formal semantics via measure theory. We demonstrate a clean and elegant implementation that achieves performance comparable with Anglican, a state-of-the-art probabilistic programming system.The first author is supported by EPSRC and the Cambridge Trust.This is the author accepted manuscript. The final version is available from ACM via http://dx.doi.org/10.1145/2804302.280431

    Hinge-Loss Markov Random Fields and Probabilistic Soft Logic: A Scalable Approach to Structured Prediction

    Get PDF
    A fundamental challenge in developing impactful artificial intelligence technologies is balancing the ability to model rich, structured domains with the ability to scale to big data. Many important problem areas are both richly structured and large scale, from social and biological networks, to knowledge graphs and the Web, to images, video, and natural language. In this thesis I introduce two new formalisms for modeling structured data, distinguished from previous approaches by their ability to both capture rich structure and scale to big data. The first, hinge-loss Markov random fields (HL-MRFs), is a new kind of probabilistic graphical model that generalizes different approaches to convex inference. I unite three views of inference from the randomized algorithms, probabilistic graphical models, and fuzzy logic communities, showing that all three views lead to the same inference objective. I then derive HL-MRFs by generalizing this unified objective. The second new formalism, probabilistic soft logic (PSL), is a probabilistic programming language that makes HL-MRFs easy to define, refine, and reuse for relational data. PSL uses a syntax based on first-order logic to compactly specify complex models. I next introduce an algorithm for inferring most-probable variable assignments (MAP inference) for HL-MRFs that is extremely scalable, much more so than commercially available software, because it uses message passing to leverage the sparse dependency structures common in inference tasks. I then show how to learn the parameters of HL-MRFs using a number of learning objectives. The learned HL-MRFs are as accurate as traditional, discrete models, but much more scalable. To enable HL-MRFs and PSL to capture even richer dependencies, I then extend learning to support latent variables, i.e., variables without training labels. To overcome the bottleneck of repeated inferences required during learning, I introduce paired-dual learning, which interleaves inference and parameter updates. Paired-dual learning learns accurate models and is also scalable, often completing before traditional methods make even one parameter update. Together, these algorithms enable HL-MRFs and PSL to model rich, structured data at scales not previously possible

    Combining Machine Learning and Formal Methods for Complex Systems Design

    Get PDF
    During the last 20 years, model-based design has become a standard practice in many fields such as automotive, aerospace engineering, systems and synthetic biology. This approach allows a considerable improvement of the final product quality and reduces the overall prototyping costs. In these contexts, formal methods, such as temporal logics, and model checking approaches have been successfully applied. They allow a precise description and automatic verification of the prototype's requirements. In the recent past, the increasing market requests for performing and safer devices shows an unstoppable growth which inevitably brings to the creation of more and more complicated devices. The rise of cyber-physical systems, which are on their way to become massively pervasive, brings the complexity level to the next step and open many new challenges. First, the descriptive power of standard temporal logics is no more sufficient to handle all kind of requirements the designers need (consider, for example, non-functional requirements). Second, the standard model checking techniques are unable to manage such level of complexity (consider the well-known curse of state space explosion). In this thesis, we leverage machine learning techniques, active learning, and optimization approaches to face the challenges mentioned above. In particular, we define signal measure logic, a novel temporal logic suited to describe non-functional requirements. We also use evolutionary algorithms and signal temporal logic to tackle a supervised classification problem and a system design problem which involves multiple conflicting requirements (i.e., multi-objective optimization problems). Finally, we use an active learning approach, based on Gaussian processes, to deal with falsification problems in the automotive field and to solve a so-called threshold synthesis problem, discussing an epidemics case study.During the last 20 years, model-based design has become a standard practice in many fields such as automotive, aerospace engineering, systems and synthetic biology. This approach allows a considerable improvement of the final product quality and reduces the overall prototyping costs. In these contexts, formal methods, such as temporal logics, and model checking approaches have been successfully applied. They allow a precise description and automatic verification of the prototype's requirements. In the recent past, the increasing market requests for performing and safer devices shows an unstoppable growth which inevitably brings to the creation of more and more complicated devices. The rise of cyber-physical systems, which are on their way to become massively pervasive, brings the complexity level to the next step and open many new challenges. First, the descriptive power of standard temporal logics is no more sufficient to handle all kind of requirements the designers need (consider, for example, non-functional requirements). Second, the standard model checking techniques are unable to manage such level of complexity (consider the well-known curse of state space explosion). In this thesis, we leverage machine learning techniques, active learning, and optimization approaches to face the challenges mentioned above. In particular, we define signal measure logic, a novel temporal logic suited to describe non-functional requirements. We also use evolutionary algorithms and signal temporal logic to tackle a supervised classification problem and a system design problem which involves multiple conflicting requirements (i.e., multi-objective optimization problems). Finally, we use an active learning approach, based on Gaussian processes, to deal with falsification problems in the automotive field and to solve a so-called threshold synthesis problem, discussing an epidemics case study
    corecore