1,378 research outputs found

    Delay analysis of a HOL priority queue

    Get PDF

    Delay analysis for wireless applications using a multiservice multiqueue processor sharing model

    Get PDF
    The ongoing development of wireless networks supporting multimedia applications requires service providers to efficiently deliver complex Quality of Service (QoS) requirements. The wide range of new applications in these networks significantly increases the difficulty of network design and dimensioning to meet QoS requirements. Medium Access Control (MAC) protocols affect QoS achieved by wireless networks. Research on analysis and performance evaluation is important for the efficient protocol design. As wireless networks feature scarce resources that are simultaneously shared by all users, processor sharing (PS) models were proposed for modelling resource sharing mechanisms in such systems. In this thesis, multi-priority MAC protocols are proposed for handling the various service traffic types. Then, an investigation of multiservice multiqueue PS models is undertaken to analyse the delay for some recently proposed wireless applications. We start with an introduction to MAC protocols for wireless networks which are specified in IEEE standards and then review scheduling algorithms which were proposed to work with the underlying MAC protocols to cooperatively achieve QoS goals. An overview of the relevant literature is given on PS models for performance analysis and evaluation of scheduling algorithms. We propose a multiservice multiqueue PS model using a scheduling scheme in multimedia wireless networks with a comprehensive description of the analytical solution. Firstly, we describe the existing multiqueue processor sharing (MPS) model, which uses a fixed service quantum at each queue, and correct a subtle incongruity in previous solutions presented in the literature. Secondly, a new scheduling framework is proposed to extend the previous MPS model to a general case. This newly proposed analytical approach is based on the idea that the service quantum arranged by a MAC scheduling controller to service data units can be priority-based. We obtain a closed-form expression for the mean delay of each service class in this model. In summary, our new approach simplifies MAC protocols for multimedia applications into an analytical model that includes more complex and realistic traffic models without compromising details of the protocol and significantly reduces the number of MAC headers, thus the overall average delay will be decreased. In response to using the studied multiservice multiqueue PS models, we apply the MPS model to two wireless applications: Push to Talk (PTT) service over GPRS/GSM networks and the Worldwide Interoperability for Microwave Access (WiMAX) networks. We investigate the uplink delay of PTT over traditional GPRS/GSM networks and the uplink delay for WiMAX Subscriber Station scheduler under a priority-based fair scheduling. MAC structures capable of supporting dynamically varying traffic are studied for the networks, especially, with the consideration of implementation issues. The model provides useful insights into the dynamic performance behaviours of GPRS/GSM and WiMAX networks with respect to various system parameters and comprehensive traffic conditions. We then evaluate the model under some different practical traffic scenarios. Through modelling of the operation of wireless access systems, under a variety of multimedia traffic, our analytical approaches provide practical analysis guidelines for wireless network dimensioning

    Scheduling for today’s computer systems: bridging theory and practice

    Get PDF
    Scheduling is a fundamental technique for improving performance in computer systems. From web servers to routers to operating systems, how the bottleneck device is scheduled has an enormous impact on the performance of the system as a whole. Given the immense literature studying scheduling, it is easy to think that we already understand enough about scheduling. But, modern computer system designs have highlighted a number of disconnects between traditional analytic results and the needs of system designers. In particular, the idealized policies, metrics, and models used by analytic researchers do not match the policies, metrics, and scenarios that appear in real systems. The goal of this thesis is to take a step towards modernizing the theory of scheduling in order to provide results that apply to today’s computer systems, and thus ease the burden on system designers. To accomplish this goal, we provide new results that help to bridge each of the disconnects mentioned above. We will move beyond the study of idealized policies by introducing a new analytic framework where the focus is on scheduling heuristics and techniques rather than individual policies. By moving beyond the study of individual policies, our results apply to the complex hybrid policies that are often used in practice. For example, our results enable designers to understand how the policies that favor small job sizes are affected by the fact that real systems only have estimates of job sizes. In addition, we move beyond the study of mean response time and provide results characterizing the distribution of response time and the fairness of scheduling policies. These results allow us to understand how scheduling affects QoS guarantees and whether favoring small job sizes results in large job sizes being treated unfairly. Finally, we move beyond the simplified models traditionally used in scheduling research and provide results characterizing the effectiveness of scheduling in multiserver systems and when users are interactive. These results allow us to answer questions about the how to design multiserver systems and how to choose a workload generator when evaluating new scheduling designs

    Understanding Fairness and its Impact on Quality of Service in IEEE 802.11

    Full text link
    The Distributed Coordination Function (DCF) aims at fair and efficient medium access in IEEE 802.11. In face of its success, it is remarkable that there is little consensus on the actual degree of fairness achieved, particularly bearing its impact on quality of service in mind. In this paper we provide an accurate model for the fairness of the DCF. Given M greedy stations we assume fairness if a tagged station contributes a share of 1/M to the overall number of packets transmitted. We derive the probability distribution of fairness deviations and support our analytical results by an extensive set of measurements. We find a closed-form expression for the improvement of long-term over short-term fairness. Regarding the random countdown values we quantify the significance of their distribution whereas we discover that fairness is largely insensitive to the distribution parameters. Based on our findings we view the DCF as emulating an ideal fair queuing system to quantify the deviations from a fair rate allocation. We deduce a stochastic service curve model for the DCF to predict packet delays in IEEE 802.11. We show how a station can estimate its fair bandwidth share from passive measurements of its traffic arrivals and departures

    Optimal Call Admission Control on a Single Link With a GPS Scheduler

    Full text link

    Heavy-traffic analysis of a multiple-phase network with discriminatory processor sharing

    Get PDF
    We analyze a generalization of the discriminatory processor-sharing (DPS) queue in a heavy-traffic setting. Customers present in the system are served simultaneously at rates controlled by a vector of weights. We assume that customers have phase-type distributed service requirements and allow that customers have different weights in various phases of their service. In our main result we establish a state-space collapse for the queue-length vector in heavy traffic. The result shows that in the limit, the queue-length vector is the product of an exponentially distributed random variable and a deterministic vector. This generalizes a previous result by Rege and Sengupta [Rege, K. M., B. Sengupta. 1996. Queue length distribution for the discriminatory processor-sharing queue. Oper. Res. 44(4) 653-657], who considered a DPS queue with exponentially distributed service requirements. Their analysis was based on obtaining all moments of the queue-length distributions by solving systems of linear equations. We undertake a more direct approach by showing that the probability-generating function satisfies a partial differential equation that allows a closed-form solution after passing to the heavy-traffic limit. Making use of the state-space collapse result, we derive interesting properties in heavy traffic: (i) For the DPS queue, we obtain that, conditioned on the number of customers in the system, the residual service requirements are asymptotically independent and distributed according to the forward recurrence times. (ii) We then investigate how the choice for the weights influences the asymptotic performance of the system. In particular, for the DPS queue we show that the scaled holding cost reduces as classes with a higher value for dk/E(B fwd k) obtain a larger share of the capacity, where dk is the cost associated to class k, and E(B fwd k) is the forward recurrence time of the class-k service requirement. The applicability of this result for a moderately loaded system is investigated by numerical experiments
    • …
    corecore