2,781 research outputs found

    Antenna selection and performance analysis of MIMO spatial multiplexing systems

    Get PDF
    Multiple-input multiple-output spatial multiplexing (MIMO-SM) systems offer an essential benefit referred to as spatial multiplexing gain. Two important signal reception techniques for MIMO-SM systems are the zero-forcing (ZF) and ordered successive interference cancellation (OSIC) as, for example, in the case of the decision-feedback detector (DFD). This thesis studies the communication and signal processing aspects of MIMO-SM. We first investigate the bit error rate (BER) performance of the ZF receiver over transmit correlated Ricean flat-fading channels. In particular, for a MIMO channel with M transmit and N receive antennas, we derive an approximation for the average BER of each sub-stream. A closed-form expression for the optimal transmit correlation coefficient, which achieves the maximum capacity (i.e., uncorrelated case) of two-input two-output spatial multiplexing (TITO-SM) systems, is presented. We further propose an antenna selection (AS) approach for the DFD over independent Rayleigh flat-fading channels. The selected transmit antennas are those that maximize both the post-processing signal-to-noise ratio (SNR) at the receiver end, and the system capacity. An upper bound on the outage probability for the AS approach is derived. It is shown that the AS approach achieves a performance comparable to optimal capacity-based selection based on exhaustive search, but at a lower complexity. Finally, we investigate a cross-layer transmit AS approach for the DFD over spatially correlated Ricean flat-fading channels. The selected transmit antennas are those that maximize the link layer throughput of correlated MIMO channels. A closed-form expression for the system throughput with perfect channel estimation is first derived. We further analyze the system performance with pilot-aided channel estimation. In that, we derive a closed-form expression for the post-detection signal-to-noise-plus-interference ratio (SNIR) of each transmitted substream, conditioned on the estimated channels. The derived SNIR is then used to evaluate the overall system throughput. It is observed that the cross-layer AS approach always assigns the transmission to the antenna combination which sees better channel conditions, resulting in a substantial improvement over the optimal capacity-based AS approach. Considering a training-based channel estimation technique, we compare the performance of the proposed cross-layer AS with that of optimal capacity-based AS when employed with a training-based channel estimation. Our results show that the latter is more robust to imperfect channel estimation. However, in all cases, the cross-layer AS delivers higher throughput gains than the capacity-based A

    On the precoder design of flat fading MIMO systems equipped with MMSE receivers: a large system approach

    Full text link
    This paper is devoted to the design of precoders maximizing the ergodic mutual information (EMI) of bi-correlated flat fading MIMO systems equiped with MMSE receivers. The channel state information and the second order statistics of the channel are assumed available at the receiver side and at the transmitter side respectively. As the direct maximization of the EMI needs the use of non attractive algorithms, it is proposed to optimize an approximation of the EMI, introduced recently, obtained when the number of transmit and receive antennas tt and rr converge to \infty at the same rate. It is established that the relative error between the actual EMI and its approximation is a O(1t2)O(\frac{1}{t^{2}}) term. It is shown that the left singular eigenvectors of the optimum precoder coincide with the eigenvectors of the transmit covariance matrix, and its singular values are solution of a certain maximization problem. Numerical experiments show that the mutual information provided by this precoder is close from what is obtained by maximizing the true EMI, but that the algorithm maximizing the approximation is much less computationally intensive.Comment: Submitted to IEEE Transactions on Information Theor

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Delay Performance of MISO Wireless Communications

    Full text link
    Ultra-reliable, low latency communications (URLLC) are currently attracting significant attention due to the emergence of mission-critical applications and device-centric communication. URLLC will entail a fundamental paradigm shift from throughput-oriented system design towards holistic designs for guaranteed and reliable end-to-end latency. A deep understanding of the delay performance of wireless networks is essential for efficient URLLC systems. In this paper, we investigate the network layer performance of multiple-input, single-output (MISO) systems under statistical delay constraints. We provide closed-form expressions for MISO diversity-oriented service process and derive probabilistic delay bounds using tools from stochastic network calculus. In particular, we analyze transmit beamforming with perfect and imperfect channel knowledge and compare it with orthogonal space-time codes and antenna selection. The effect of transmit power, number of antennas, and finite blocklength channel coding on the delay distribution is also investigated. Our higher layer performance results reveal key insights of MISO channels and provide useful guidelines for the design of ultra-reliable communication systems that can guarantee the stringent URLLC latency requirements.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore