4 research outputs found

    Systematic hybrid analog/digital signal coding

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 201-206).This thesis develops low-latency, low-complexity signal processing solutions for systematic source coding, or source coding with side information at the decoder. We consider an analog source signal transmitted through a hybrid channel that is the composition of two channels: a noisy analog channel through which the source is sent unprocessed and a secondary rate-constrained digital channel; the source is processed prior to transmission through the digital channel. The challenge is to design a digital encoder and decoder that provide a minimum-distortion reconstruction of the source at the decoder, which has observations of analog and digital channel outputs. The methods described in this thesis have importance to a wide array of applications. For example, in the case of in-band on-channel (IBOC) digital audio broadcast (DAB), an existing noisy analog communications infrastructure may be augmented by a low-bandwidth digital side channel for improved fidelity, while compatibility with existing analog receivers is preserved. Another application is a source coding scheme which devotes a fraction of available bandwidth to the analog source and the rest of the bandwidth to a digital representation. This scheme is applicable in a wireless communications environment (or any environment with unknown SNR), where analog transmission has the advantage of a gentle roll-off of fidelity with SNR. A very general paradigm for low-latency, low-complexity source coding is composed of three basic cascaded elements: 1) a space rotation, or transformation, 2) quantization, and 3) lossless bitstream coding. The paradigm has been applied with great success to conventional source coding, and it applies equally well to systematic source coding. Focusing on the case involving a Gaussian source, Gaussian channel and mean-squared distortion, we determine optimal or near-optimal components for each of the three elements, each of which has analogous components in conventional source coding. The space rotation can take many forms such as linear block transforms, lapped transforms, or subband decomposition, all for which we derive conditions of optimality. For a very general case we develop algorithms for the design of locally optimal quantizers. For the Gaussian case, we describe a low-complexity scalar quantizer, the nested lattice scalar quantizer, that has performance very near that of the optimal systematic scalar quantizer. Analogous to entropy coding for conventional source coding, Slepian-Wolf coding is shown to be an effective lossless bitstream coding stage for systematic source coding.by Richard J. Barron.Ph.D

    Algorithms and architecture for multiusers, multi-terminal, multi-layer information theoretic security

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 161-164).As modern infrastructure systems become increasingly more complex, we are faced with many new challenges in the area of information security. In this thesis we examine some approaches to security based on ideas from information theory. The protocols considered in this thesis, build upon the "wiretap channel," a model for physical layer security proposed by A. Wyner in 1975. At a higher level, the protocols considered here can strengthen existing mechanisms for security by providing a new location based approach at the physical layer.In the first part of this thesis, we extend the wiretap channel model to the case when there are multiple receivers, each experiencing a time varying fading channel. Both the scenario when each legitimate receiver wants a common message as well as the scenario when they all want separate messages are studied and capacity results are established in several special cases. When each receiver wants a separate independent message, an opportunistic scheme that transmits to the strongest user at each time, and uses Gaussian codebooks is shown to achieve the sum secrecy capacity in the limit of many users. When each receiver wants a common message, a lower bound to the capacity is provided, independent of the number of receivers. In the second part of the thesis the role of multiple antennas for secure communication studied. We establish the secrecy capacity of the multi antenna wiretap channel (MIMOME channel), when the channel matrices of the legitimate receiver and eavesdropper are fixed and known to all the terminals. To establish the capacity, a new computable upper bound on the secrecy capacity of the wiretap channel is developed, which may be of independent interest. It is shown that Gaussian codebooks suffice to attain the capacity for this problem. For the case when the legitimate receiver has a single antenna (MISOME channel) a rank one transmission scheme is shown to attain the capacity.(CONT.) In the high signal-to-noise ratio (SNR) regime, it is shown that a capacity achieving scheme involves simultaneous diagonalization of the channel matrices using the generalized singular value decomposition and independently coding accross the resulting parallel channels. Furthermore a semi-blind masked beamforming scheme is studied, which transmits signal of interest in the subspace of the legitimate receiver's channel and synthetic noise in the orthogonal subspace. It is shown that this scheme is nearly optimal in the high SNR regime for the MISOME case and the performance penalty for the MIMOME channel is evaluated in terms of the generalized singular values. The behavior of the secrecy capacity in the limit of many antennas is also studied. When the channel matrices have i.i.d. CN(O, 1) entries, we show that (1) the secrecy capacity for the MISOME channel converges (almost surely) to zero if and only if the eavesdropper increases its antennas at a rate twice as fast as the sender (2) when a total of T >> 1 antennas have to be allocated between the sender and the receiver, the optimal allocation, which maximizes the number of eavesdropping antennas for zero secrecy capacity is 2 : 1. In the final part of the thesis, we consider a variation of the wiretap channel where the sender and legitimate receiver also have access to correlated source sequences. They use both the sources and the structure of the underlying channel to extract secret keys. We provide general upper and lower bounds on the secret key rate and establish the capacity for the reversely degraded case.by Ashish Khisti.Ph.D

    Joint Spatial and Spectrum Cooperation in Wireless Network.

    Get PDF
    PhDThe sky-rocketing growth of multimedia infotainment applications and broadband-hungry mobile devices exacerbate the stringent demand for ultra high data rate and more spectrum resources. Along with it, the unbalanced temporal and geographical variations of spectrum usage further inspires those spectral-efficient networks, namely, cognitive radio and heterogeneous cellular networks (HCNs). This thesis focuses on the system design and performance enhancement of cognitive radio (CR) and HCNs. Three different aspects of performance improvement are considered, including link reliability of cognitive radio networks (CNs), security enhancement of CNs, and energy efficiency improvement of CNs and HCNs. First, generalized selection combining (GSC) is proposed as an effective receiver design for interference reduction and reliability improvement of CNs with outdated CSI. A uni- ed way for deriving the distribution of received signal-to-noise ratio (SNR) is developed in underlay spectrum sharing networks subject to interference from the primary trans- mitter (PU-Tx) to the secondary receiver (SU-Rx), maximum transmit power constraint at the secondary transmitter (SU-Tx), and peak interference power constraint at the PU receiver (PU-Rx), is developed. Second, transmit antenna selection with receive generalized selection combining (TAS/GSC) in multi-antenna relay-aided communica- tion is introduced in CNs under Rayleigh fading and Nakagami-m fading. Based on newly derived complex statistical properties of channel power gain of TAS/GSC, exact ergodic capacity and high SNR ergodic capacity are derived over Nakagami-m fading. Third, beamforming and arti cial noise generation (BF&AN) is introduced as a robust scheme to enhance the secure transmission of large-scale spectrum sharing networks with multiple randomly located eavesdroppers (Eves) modeled as homogeneous Poisson Point Process (PPP). Stochastic geometry is applied to model and analyze the impact of i BF&AN on this complex network. Optimal power allocation factor for BF&AN which maximizes the average secrecy rate is further studied under the outage probability con- straint of primary network. Fourth, a new wireless energy harvesting protocol is proposed for underlay cognitive relay networks with the energy-constrained SU-Txs. Exact and asymptotic outage probability, delay-sensitive throughput, and delay-tolerant through- put are derived to explore the tradeoff between the energy harvested from the PU-Txs and the interference caused by the PU-Txs. Fifth, a harvest-then-transmit protocol is proposed in K-tier HCNs with randomly located multiple-antenna base stations (BSs) and single antenna mobile terminals (MTs) modeled as homogeneous PPP. The average received power at MT, the uplink (UL) outage probability, and the UL average ergodic rate are derived to demonstrate the intrinsic relationship between the energy harvested from BSs in the downlink (DL) and the MT performance in the UL. Throughout the thesis, it is shown that link reliability, secrecy performance, and energy efficiency of CNs and HCNs can be signi cantly leveraged by taking advantage of multiple antennas, relays, and wireless energy harvesting
    corecore