1,570 research outputs found

    The dynamic control of robotic manipulators in space

    Get PDF
    Described briefly is the work done during the first half year of a three-year study on dynamic control of robotic manipulators in space. The research focused on issues for advanced control of space manipulators including practical issues and new applications for the Virtual Manipulator. In addition, the development of simulations and graphics software for space manipulators, begun during the first NASA proposal in the area, has continued. The fabrication of the Vehicle Emulator System (VES) is completed and control algorithms are in process of development

    Modelling and Validation of Robot Manipulators

    Get PDF
    There are many methods to describe manipulator dynamics, the iterative Newton-Euler dynamic formulation and the Lagrange-Euler formulation are two of them. Between these two well known methods, the former has been regarded as computationally efficient, and the latter as understandable in representing manipulator dynamics. It is hard and dull to generate robot manipulator dynamic equations manually from either the iterative Newton-Euler dynamic formulation or the Lagrange-Euler formulation. Therefore, the two general programmes, which are based on these two formulations respectively and suited to rotary joint manipulators, have been written in REDUCE. After running the programmes, we find that the calculation time for generating the dynamic equations of a rotary joint manipulator by the programme based on the Lagrange-Euler formulation is much shorter than the one by the programme based on the other

    Nonlinear control for Two-Link flexible manipulator

    Get PDF
    Recently the use of robot manipulators has been increasing in many applications such as medical applications, automobile, construction, manufacturing, military, space, etc. However, current rigid manipulators have high inertia and use actuators with large energy consumption. Moreover, rigid manipulators are slow and have low payload-to arm-mass ratios because link deformation is not allowed. The main advantages of flexible manipulators over rigid manipulators are light in weight, higher speed of operation, larger workspace, smaller actuator, lower energy consumption and lower cost. However, there is no adequate closed-form solutions exist for flexible manipulators. This is mainly because flexible dynamics are modeled with partial differential equations, which give rise to infinite dimensional dynamical systems that are, in general, not possible to represent exactly or efficiently on a computer which makes modeling a challenging task. In addition, if flexibility nature wasn\u27t considered, there will be calculation errors in the calculated torque requirement for the motors and in the calculated position of the end-effecter. As for the control task, it is considered as a complex task since flexible manipulators are non-minimum phase system, under-actuated system and Multi-Input/Multi-Output (MIMO) nonlinear system. This thesis focuses on the development of dynamic formulation model and three control techniques aiming to achieve accurate position control and improving dynamic stability for Two-Link Flexible Manipulators (TLFMs). LQR controller is designed based on the linearized model of the TLFM; however, it is applied on both linearized and nonlinear models. In addition to LQR, Backstepping and Sliding mode controllers are designed as nonlinear control approaches and applied on both the nonlinear model of the TLFM and the physical system. The three developed control techniques are tested through simulation based on the developed dynamic formulation model using MATLAB/SIMULINK. Stability and performance analysis were conducted and tuned to obtain the best results. Then, the performance and stability results obtained through simulation are compared. Finally, the developed control techniques were implemented and analyzed on the 2-DOF Serial Flexible Link Robot experimental system from Quanser and the results are illustrated and compared with that obtained through simulation

    Efficient computation of inverse dynamics and feedback linearization for VSA-based robots

    Get PDF
    We develop a recursive numerical algorithm to compute the inverse dynamics of robot manipulators with an arbitrary number of joints, driven by variable stiffness actuation (VSA) of the antagonistic type. The algorithm is based on Newton-Euler dynamic equations, generalized up to the fourth differential order to account for the compliant transmissions, combined with the decentralized nonlinear dynamics of the variable stiffness actuators at each joint. A variant of the algorithm can be used also for implementing a feedback linearization control law for the accurate tracking of desired link and stiffness trajectories. As in its simpler versions, the algorithm does not require dynamicmodeling in symbolic form, does not use numerical approximations, grows linearly in complexity with the number of joints, and is suitable for online feedforward and real-time feedback control. A Matlab/C code is made available

    Kinematically optimal hyper-redundant manipulator configurations

    Get PDF
    “Hyper-redundant” robots have a very large or infinite degree of kinematic redundancy. This paper develops new methods for determining “optimal” hyper-redundant manipulator configurations based on a continuum formulation of kinematics. This formulation uses a backbone curve model to capture the robot's essential macroscopic geometric features. The calculus of variations is used to develop differential equations, whose solution is the optimal backbone curve shape. We show that this approach is computationally efficient on a single processor, and generates solutions in O(1) time for an N degree-of-freedom manipulator when implemented in parallel on O(N) processors. For this reason, it is better suited to hyper-redundant robots than other redundancy resolution methods. Furthermore, this approach is useful for many hyper-redundant mechanical morphologies which are not handled by known methods

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Static force capabilities and dynamic capabilities of parallel mechanisms equipped with safety clutches

    Get PDF
    Cette thĂšse Ă©tudie les forces potentielles des mĂ©canismes parallĂšles plans Ă  deux degrĂ©s de libertĂ© Ă©quipĂ©s d'embrayages de sĂ©curitĂ© (limiteur de couple). Les forces potentielles sont Ă©tudiĂ©es sur la base des matrices jacobienne. La force maximale qui peut ĂȘtre appliquĂ©e Ă  l'effecteur en fonction des limiteurs de couple ainsi que la force maximale isotrope sont dĂ©terminĂ©es. Le rapport entre ces deux forces est appelĂ© l'efficacitĂ© de la force et peut ĂȘtre considĂ©rĂ© ; comme un indice de performance. Enfin, les rĂ©sultats numĂ©riques proposĂ©s donnent un aperçu sur la conception de robots coopĂ©ratifs reposant sur des architectures parallĂšles. En isolant chaque lien, les modĂšles dynamiques approximatifs sont obtenus Ă  partir de l'approche Newton-Euler et des Ă©quations de Lagrange pour du tripteron et du quadrupteron. La plage de l'accĂ©lĂ©ration de l'effecteur et de la force externe autorisĂ©e peut ĂȘtre trouvĂ©e pour une plage donnĂ©e de forces d'actionnement.This thesis investigates the force capabilities of two-degree-of-freedom planar parallel mechanisms that are equipped with safety clutches (torque limiters). The force capabilities are studied based on the Jacobian matrices. The maximum force that can be applied at the end-effector for given torque limits (safety index) is determined together with the maximum isotropic force that can be produced. The ratio between these two forces, referred to as the force effectiveness, can be considered as a performance index. Finally, some numerical results are proposed which can provide insight into the design of cooperation robots based on parallel architectures. Considering each link and slider system as a single body, approximate dynamic models are derived based on the Newton-Euler approach and Lagrange equations for the tripteron and the quadrupteron. The acceleration range or the external force range of the end-effector are determined and given as a safety consideration with the dynamic models

    Kinematic and dynamic analyses of general robots by applying the C-B notation-RaMIP (Robot and Mechanism Integrated Program)

    Get PDF
    In this thesis, a new symbolic representation based on 4x4 homogeneous matrices, C-B (Cylindrical Coordinates - Bryant Angles) notation, has been applied to the kinematic and dynamic analyses of general robots, and a computer algorithm named RaMIP (Robot and Mechanism Integrated Program) has been developed on a Sun workstation for the design and analysis of robots and mechanisms. RaMIP can be used to model most industrial robots currently in use. It performs three-dimensional kinematic and dynamic analyses and takes advantage of the computational efficiency of C-B notation. The C-B notation allows the user to model an arbitrary mechanism consisting of any combination of revolute, prismatic and spherical joints. RaMIP has the capability of presenting results in the form of two- and three-dimensional plots of colored contours, as well as tables of numerical data. The algorithm is examined and tested by analyzing several commercial robots. Kinematic and dynamic results are computed and presented in two- and three-dimensional graphs and compared with known data to probe the validity and accuracy of RaMIP. It should be noticed that the efforts completed in this thesis present only the first step towards the implementation of a general purpose computer algorithm -RaMIP- for the automated design and analysis of open- and closed-chain mechanisms utilizing C-B notation

    Dynamic modeling, property investigation, and adaptive controller design of serial robotic manipulators modeled with structural compliance

    Get PDF
    Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied
    • 

    corecore