2,264 research outputs found

    Closed queueing networks with batch services

    Get PDF

    Arrival first queueing networks with applications in kanban production systems

    Get PDF
    In this paper we introduce a new class of queueing networks called {\it arrival first networks}. We characterise its transition rates and derive the relationship between arrival rules, linear partial balance equations, and product form stationary distributions. This model is motivated by production systems operating under a kanban protocol. In contrast with the conventional {\em departure first networks}, where a transition is initiated by service completion of items at the originating nodes that are subsequently routed to the destination nodes (push system), in an arrival first network a transition is initiated by the destination nodes of the items and subsequently those items are processed at and removed from the originating nodes (pull system). These are similar to the push and pull systems in manufacturing systems

    A batch-service queueing model with a discrete batch Markovian arrival process

    Get PDF
    Queueing systems with batch service have been investigated extensively during the past decades. However, nearly all the studied models share the common feature that an uncorrelated arrival process is considered, which is unrealistic in several real-life situations. In this paper, we study a discrete-time queueing model, with a server that only initiates service when the amount of customers in system (system content) reaches or exceeds a threshold. Correlation is taken into account by assuming a discrete batch Markovian arrival process (D-BMAP), i.e. the distribution of the number of customer arrivals per slot depends on a background state which is determined by a first-order Markov chain. We deduce the probability generating function of the system content at random slot marks and we examine the influence of correlation in the arrival process on the behavior of the system. We show that correlation merely has a small impact on the threshold that minimizes the mean system content. In addition, we demonstrate that correlation might have a significant influence on the system content and therefore has to be included in the model

    The effective bandwidth problem revisited

    Full text link
    The paper studies a single-server queueing system with autonomous service and â„“\ell priority classes. Arrival and departure processes are governed by marked point processes. There are â„“\ell buffers corresponding to priority classes, and upon arrival a unit of the kkth priority class occupies a place in the kkth buffer. Let N(k)N^{(k)}, k=1,2,...,â„“k=1,2,...,\ell denote the quota for the total kkth buffer content. The values N(k)N^{(k)} are assumed to be large, and queueing systems both with finite and infinite buffers are studied. In the case of a system with finite buffers, the values N(k)N^{(k)} characterize buffer capacities. The paper discusses a circle of problems related to optimization of performance measures associated with overflowing the quota of buffer contents in particular buffers models. Our approach to this problem is new, and the presentation of our results is simple and clear for real applications.Comment: 29 pages, 11pt, Final version, that will be published as is in Stochastic Model

    Batch queues, reversibility and first-passage percolation

    Full text link
    We consider a model of queues in discrete time, with batch services and arrivals. The case where arrival and service batches both have Bernoulli distributions corresponds to a discrete-time M/M/1 queue, and the case where both have geometric distributions has also been previously studied. We describe a common extension to a more general class where the batches are the product of a Bernoulli and a geometric, and use reversibility arguments to prove versions of Burke's theorem for these models. Extensions to models with continuous time or continuous workload are also described. As an application, we show how these results can be combined with methods of Seppalainen and O'Connell to provide exact solutions for a new class of first-passage percolation problems.Comment: 16 pages. Mostly minor revisions; some new explanatory text added in various places. Thanks to a referee for helpful comments and suggestion
    • …
    corecore