31,484 research outputs found

    Closed on-line bin packing

    Get PDF
    An optimal algorithm for the classical bin packing problem partitions (packs) a given set of items with sizes at most 1 into a smallest number of unit-capacity bins such that the sum of the sizes of the items in each bin is at most 1. Approximation algorithms for this NP-hard problem are called on-line if the items are packed sequentially into bins with the bin receiving a given item being independent of the number and sizes of all items as yet unpacked. Off-line algorithms plan packings assuming full (advance) knowledge of all item sizes. The closed on-line algorithms are intermediate: item sizes are not known in advance but the number n of items is. The uniform model, where the n item sizes are independent uniform random draws from [0,1], commands special attention in the average-case analysis of bin packing algorithms. In this model, the expected wasted space produced by an optimal off-line algorithm is Θ(√n), while that produced by an optimal on-line algorithm is Θ(√n log n)- Surprisingly, an optimal closed on-line algorithm also wastes only s Θ(√n) space on the average. A proof of this last result is the principal contribution of this paper. However, we also identify a class of optimal closed algorithms, extend the main result to other probability models, and give an estimate of the hidden constant factor

    Online Circle and Sphere Packing

    Full text link
    In this paper we consider the Online Bin Packing Problem in three variants: Circles in Squares, Circles in Isosceles Right Triangles, and Spheres in Cubes. The two first ones receive an online sequence of circles (items) of different radii while the third one receive an online sequence of spheres (items) of different radii, and they want to pack the items into the minimum number of unit squares, isosceles right triangles of leg length one, and unit cubes, respectively. For Online Circle Packing in Squares, we improve the previous best-known competitive ratio for the bounded space version, when at most a constant number of bins can be open at any given time, from 2.439 to 2.3536. For Online Circle Packing in Isosceles Right Triangles and Online Sphere Packing in Cubes we show bounded space algorithms of asymptotic competitive ratios 2.5490 and 3.5316, respectively, as well as lower bounds of 2.1193 and 2.7707 on the competitive ratio of any online bounded space algorithm for these two problems. We also considered the online unbounded space variant of these three problems which admits a small reorganization of the items inside the bin after their packing, and we present algorithms of competitive ratios 2.3105, 2.5094, and 3.5146 for Circles in Squares, Circles in Isosceles Right Triangles, and Spheres in Cubes, respectively

    Online Bin Covering: Expectations vs. Guarantees

    Full text link
    Bin covering is a dual version of classic bin packing. Thus, the goal is to cover as many bins as possible, where covering a bin means packing items of total size at least one in the bin. For online bin covering, competitive analysis fails to distinguish between most algorithms of interest; all "reasonable" algorithms have a competitive ratio of 1/2. Thus, in order to get a better understanding of the combinatorial difficulties in solving this problem, we turn to other performance measures, namely relative worst order, random order, and max/max analysis, as well as analyzing input with restricted or uniformly distributed item sizes. In this way, our study also supplements the ongoing systematic studies of the relative strengths of various performance measures. Two classic algorithms for online bin packing that have natural dual versions are Harmonic and Next-Fit. Even though the algorithms are quite different in nature, the dual versions are not separated by competitive analysis. We make the case that when guarantees are needed, even under restricted input sequences, dual Harmonic is preferable. In addition, we establish quite robust theoretical results showing that if items come from a uniform distribution or even if just the ordering of items is uniformly random, then dual Next-Fit is the right choice.Comment: IMADA-preprint-c

    Approximating Geometric Knapsack via L-packings

    Full text link
    We study the two-dimensional geometric knapsack problem (2DK) in which we are given a set of n axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack. The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack (without rotating items). The best-known polynomial-time approximation factor for this problem (even just in the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. In this paper, we break the 2 approximation barrier, achieving a polynomial-time (17/9 + \epsilon) < 1.89 approximation, which improves to (558/325 + \epsilon) < 1.72 in the cardinality case. Essentially all prior work on 2DK approximation packs items inside a constant number of rectangular containers, where items inside each container are packed using a simple greedy strategy. We deviate for the first time from this setting: we show that there exists a large profit solution where items are packed inside a constant number of containers plus one L-shaped region at the boundary of the knapsack which contains items that are high and narrow and items that are wide and thin. As a second major and the main algorithmic contribution of this paper, we present a PTAS for this case. We believe that this will turn out to be useful in future work in geometric packing problems. We also consider the variant of the problem with rotations (2DKR), where items can be rotated by 90 degrees. Also, in this case, the best-known polynomial-time approximation factor (even for the cardinality case) is (2 + \epsilon) [Jansen and Zhang, SODA 2004]. Exploiting part of the machinery developed for 2DK plus a few additional ideas, we obtain a polynomial-time (3/2 + \epsilon)-approximation for 2DKR, which improves to (4/3 + \epsilon) in the cardinality case.Comment: 64pages, full version of FOCS 2017 pape

    Locality-preserving allocations Problems and coloured Bin Packing

    Get PDF
    We study the following problem, introduced by Chung et al. in 2006. We are given, online or offline, a set of coloured items of different sizes, and wish to pack them into bins of equal size so that we use few bins in total (at most α\alpha times optimal), and that the items of each colour span few bins (at most β\beta times optimal). We call such allocations (α,β)(\alpha, \beta)-approximate. As usual in bin packing problems, we allow additive constants and consider (α,β)(\alpha,\beta) as the asymptotic performance ratios. We prove that for \eps>0, if we desire small α\alpha, no scheme can beat (1+\eps, \Omega(1/\eps))-approximate allocations and similarly as we desire small β\beta, no scheme can beat (1.69103, 1+\eps)-approximate allocations. We give offline schemes that come very close to achieving these lower bounds. For the online case, we prove that no scheme can even achieve (O(1),O(1))(O(1),O(1))-approximate allocations. However, a small restriction on item sizes permits a simple online scheme that computes (2+\eps, 1.7)-approximate allocations
    • …
    corecore