64 research outputs found

    What is a categorical model of arrows?

    Get PDF
    We investigate what the correct categorical formulation of Hughes’ Arrows should be. It has long been folklore that Arrows, a functional programming construct, and Freyd categories, a categorical notion due to Power, Robinson and Thielecke, are somehow equivalent. In this paper, we show that the situation is more subtle. By considering Arrows wholly within the base category we derive two alternative formulations of Freyd category that are equivalent to Arrows—enriched Freyd categories and indexed Freyd categories. By imposing a further condition, we characterise those indexed Freyd categories that are isomorphic to Freyd categories. The key differentiating point is the number of inputs available to a computation and the structure available on them, where structured input is modelled using comonads

    Parameterised notions of computation

    Get PDF
    Moggi’s Computational Monads and Power et al’s equivalent notion of Freyd category have captured a large range of computational effects present in programming languages such as exceptions, side-effects, input/output and continuations. We present generalisations of both constructs, which we call parameterised monads and parameterised Freyd categories, that also capture computational effects with parameters. Examples of such are composable continuations, side-effects where the type of the state varies and input/output where the range of inputs and outputs varies. By also considering monoidal parameterisation, we extend the range of effects to cover separated side-effects and multiple independent streams of I/O. We also present two typed λ-calculi that soundly and completely model our categorical deïŹnitions — with and without monoidal parameterisation — and act as prototypical languages with parameterised effects

    Representing Guardedness in Call-By-Value

    Get PDF
    Like the notion of computation via (strong) monads serves to classify various flavours of impurity, including exceptions, non-determinism, probability, local and global store, the notion of guardedness classifies well-behavedness of cycles in various settings. In its most general form, the guardedness discipline applies to general symmetric monoidal categories and further specializes to Cartesian and co-Cartesian categories, where it governs guarded recursion and guarded iteration respectively. Here, even more specifically, we deal with the semantics of call-by-value guarded iteration. It was shown by Levy, Power and Thielecke that call-by-value languages can be generally interpreted in Freyd categories, but in order to represent effectful function spaces, such a category must canonically arise from a strong monad. We generalize this fact by showing that representing guarded effectful function spaces calls for certain parametrized monads (in the sense of Uustalu). This provides a description of guardedness as an intrinsic categorical property of programs, complementing the existing description of guardedness as a predicate on a category

    Promonads and String Diagrams for Effectful Categories

    Full text link
    Premonoidal and Freyd categories are both generalized by non-cartesian Freyd categories: effectful categories. We construct string diagrams for effectful categories in terms of the string diagrams for a monoidal category with a freely added object. We show that effectful categories are pseudomonoids in a monoidal bicategory of promonads with a suitable tensor product.Comment: In Proceedings ACT 2022, arXiv:2307.1551

    Categories and Types for Axiomatic Domain Theory

    Get PDF
    Submitted for the degree of Doctor of Philosophy, University of londo

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th European Symposium on Programming, ESOP 2019, which took place in Prague, Czech Republic, in April 2019, held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019
    • 

    corecore