4 research outputs found

    Methods for Robust and Energy-Efficient Microprocessor Architectures

    Get PDF
    Σήμερα, η εξέλιξη της τεχνολογίας επιτρέπει τη βελτίωση τριών βασικών στοιχείων της σχεδίασης των επεξεργαστών: αυξημένες επιδόσεις, χαμηλότερη κατανάλωση ισχύος και χαμηλότερο κόστος παραγωγής του τσιπ, ενώ οι σχεδιαστές επεξεργαστών έχουν επικεντρωθεί στην παραγωγή επεξεργαστών με περισσότερες λειτουργίες σε χαμηλότερο κόστος. Οι σημερινοί επεξεργαστές είναι πολύ ταχύτεροι και διαθέτουν εξελιγμένες λειτουργικές μονάδες συγκριτικά με τους προκατόχους τους, ωστόσο, καταναλώνουν αρκετά μεγάλη ενέργεια. Τα ποσά ηλεκτρικής ισχύος που καταναλώνονται, και η επακόλουθη έκλυση θερμότητας, αυξάνονται παρά τη μείωση του μεγέθους των τρανζίστορ. Αναπτύσσοντας όλο και πιο εξελιγμένους μηχανισμούς και λειτουργικές μονάδες για την αύξηση της απόδοσης και βελτίωση της ενέργειας, σε συνδυασμό με τη μείωση του μεγέθους των τρανζίστορ, οι επεξεργαστές έχουν γίνει εξαιρετικά πολύπλοκα συστήματα, καθιστώντας τη διαδικασία της επικύρωσής τους σημαντική πρόκληση για τη βιομηχανία ολοκληρωμένων κυκλωμάτων. Συνεπώς, οι κατασκευαστές επεξεργαστών αφιερώνουν επιπλέον χρόνο, προϋπολογισμό και χώρο στο τσιπ για να διασφαλίσουν ότι οι επεξεργαστές θα λειτουργούν σωστά κατά τη διάθεσή τους στη αγορά. Για τους λόγους αυτούς, η εργασία αυτή παρουσιάζει νέες μεθόδους για την επιτάχυνση και τη βελτίωση της φάσης της επικύρωσης, καθώς και για τη βελτίωση της ενεργειακής απόδοσης των σύγχρονων επεξεργαστών. Στο πρώτο μέρος της διατριβής προτείνονται δύο διαφορετικές μέθοδοι για την επικύρωση του επεξεργαστή, οι οποίες συμβάλλουν στην επιτάχυνση αυτής της διαδικασίας και στην αποκάλυψη σπάνιων σφαλμάτων στους μηχανισμούς μετάφρασης διευθύνσεων των σύγχρονων επεξεργαστών. Και οι δύο μέθοδοι καθιστούν ευκολότερη την ανίχνευση και τη διάγνωση σφαλμάτων, και επιταχύνουν την ανίχνευση του σφάλματος κατά τη φάση της επικύρωσης. Στο δεύτερο μέρος της διατριβής παρουσιάζεται μια λεπτομερής μελέτη χαρακτηρισμού των περιθωρίων τάσης σε επίπεδο συστήματος σε δύο σύγχρονους ARMv8 επεξεργαστές. Η μελέτη του χαρακτηρισμού προσδιορίζει τα αυξημένα περιθώρια τάσης που έχουν προκαθοριστεί κατά τη διάρκεια κατασκευής του κάθε μεμονωμένου πυρήνα του επεξεργαστή και αναλύει τυχόν απρόβλεπτες συμπεριφορές που μπορεί να προκύψουν σε συνθήκες μειωμένης τάσης. Για την μελέτη και καταγραφή της συμπεριφοράς του συστήματος υπό συνθήκες μειωμένης τάσης, παρουσιάζεται επίσης σε αυτή τη διατριβή μια απλή και ενοποιημένη συνάρτηση: η συνάρτηση πυκνότητας-σοβαρότητας. Στη συνέχεια, παρουσιάζεται αναλυτικά η ανάπτυξη ειδικά σχεδιασμένων προγραμμάτων (micro-viruses) τα οποία υποβάλουν της θεμελιώδεις δομές του επεξεργαστή σε μεγάλο φορτίο εργασίας. Αυτά τα προγράμματα στοχεύουν στην γρήγορη αναγνώριση των ασφαλών περιθωρίων τάσης. Τέλος, πραγματοποιείται ο χαρακτηρισμός των περιθωρίων τάσης σε εκτελέσεις πολλαπλών πυρήνων, καθώς επίσης και σε διαφορετικές συχνότητες, και προτείνεται ένα πρόγραμμα το οποίο εκμεταλλεύεται όλες τις διαφορετικές πτυχές του προβλήματος της κατανάλωσης ενέργειας και παρέχει μεγάλη εξοικονόμηση ενέργειας διατηρώντας παράλληλα υψηλά επίπεδα απόδοσης. Αυτή η μελέτη έχει ως στόχο τον εντοπισμό και την ανάλυση της σχέσης μεταξύ ενέργειας και απόδοσης σε διαφορετικούς συνδυασμούς τάσης και συχνότητας, καθώς και σε διαφορετικό αριθμό νημάτων/διεργασιών που εκτελούνται στο σύστημα, αλλά και κατανομής των προγραμμάτων στους διαθέσιμους πυρήνες.Technology scaling has enabled improvements in the three major design optimization objectives: increased performance, lower power consumption, and lower die cost, while system design has focused on bringing more functionality into products at lower cost. While today's microprocessors, are much faster and much more versatile than their predecessors, they also consume much power. As operating frequency and integration density increase, the total chip power dissipation increases. This is evident from the fact that due to the demand for increased functionality on a single chip, more and more transistors are being packed on a single die and hence, the switching frequency increases in every technology generation. However, by developing aggressive and sophisticated mechanisms to boost performance and to enhance the energy efficiency in conjunction with the decrease of the size of transistors, microprocessors have become extremely complex systems, making the microprocessor verification and manufacturing testing a major challenge for the semiconductor industry. Manufacturers, therefore, choose to spend extra effort, time, budget and chip area to ensure that the delivered products are operating correctly. To meet high-dependability requirements, manufacturers apply a sequence of verification tasks throughout the entire life-cycle of the microprocessor to ensure the correct functionality of the microprocessor chips from the various types of errors that may occur after the products are released to the market. To this end, this work presents novel methods for ensuring the correctness of the microprocessor during the post-silicon validation phase and for improving the energy efficiency requirements of modern microprocessors. These methods can be applied during the prototyping phase of the microprocessors or after their release to the market. More specifically, in the first part of the thesis, we present and describe two different ISA-independent software-based post-silicon validation methods, which contribute to formalization and modeling as well as the acceleration of the post-silicon validation process and expose difficult-to-find bugs in the address translation mechanisms (ATM) of modern microprocessors. Both methods improve the detection and diagnosis of a hardware design bug in the ATM structures and significantly accelerate the bug detection during the post-silicon validation phase. In the second part of the thesis we present a detailed system-level voltage scaling characterization study for two state-of-the-art ARMv8-based multicore CPUs. We present an extensive characterization study which identifies the pessimistic voltage guardbands (the increased voltage margins set by the manufacturer) of each individual microprocessor core and analyze any abnormal behavior that may occur in off-nominal voltage conditions. Towards the formalization of the any abnormal behavior we also present a simple consolidated function; the Severity function, which aggregates the effects of reduced voltage operation. We then introduce the development of dedicated programs (diagnostic micro-viruses) that aim to accelerate the time-consuming voltage margins characterization studies by stressing the fundamental hardware components. Finally, we present a comprehensive exploration of how two server-grade systems behave in different frequency and core allocation configurations beyond nominal voltage operation in multicore executions. This analysis aims (1) to identify the best performance per watt operation points, (2) to reveal how and why the different core allocation options affect the energy consumption, and (3) to enhance the default Linux scheduler to take task allocation decisions for balanced performance and energy efficiency

    Approximate logic circuits: Theory and applications

    Get PDF
    CMOS technology scaling, the process of shrinking transistor dimensions based on Moore's law, has been the thrust behind increasingly powerful integrated circuits for over half a century. As dimensions are scaled to few tens of nanometers, process and environmental variations can significantly alter transistor characteristics, thus degrading reliability and reducing performance gains in CMOS designs with technology scaling. Although design solutions proposed in recent years to improve reliability of CMOS designs are power-efficient, the performance penalty associated with these solutions further reduces performance gains with technology scaling, and hence these solutions are not well-suited for high-performance designs. This thesis proposes approximate logic circuits as a new logic synthesis paradigm for reliable, high-performance computing systems. Given a specification, an approximate logic circuit is functionally equivalent to the given specification for a "significant" portion of the input space, but has a smaller delay and power as compared to a circuit implementation of the original specification. This contributions of this thesis include (i) a general theory of approximation and efficient algorithms for automated synthesis of approximations for unrestricted random logic circuits, (ii) logic design solutions based on approximate circuits to improve reliability of designs with negligible performance penalty, and (iii) efficient decomposition algorithms based on approxiiii mate circuits to improve performance of designs during logic synthesis. This thesis concludes with other potential applications of approximate circuits and identifies. open problems in logic decomposition and approximate circuit synthesis

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF
    corecore