1,429 research outputs found

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future

    On the Anonymization of Differentially Private Location Obfuscation

    Full text link
    Obfuscation techniques in location-based services (LBSs) have been shown useful to hide the concrete locations of service users, whereas they do not necessarily provide the anonymity. We quantify the anonymity of the location data obfuscated by the planar Laplacian mechanism and that by the optimal geo-indistinguishable mechanism of Bordenabe et al. We empirically show that the latter provides stronger anonymity than the former in the sense that more users in the database satisfy k-anonymity. To formalize and analyze such approximate anonymity we introduce the notion of asymptotic anonymity. Then we show that the location data obfuscated by the optimal geo-indistinguishable mechanism can be anonymized by removing a smaller number of users from the database. Furthermore, we demonstrate that the optimal geo-indistinguishable mechanism has better utility both for users and for data analysts.Comment: ISITA'18 conference pape

    Knowing Your Population: Privacy-Sensitive Mining of Massive Data

    Full text link
    Location and mobility patterns of individuals are important to environmental planning, societal resilience, public health, and a host of commercial applications. Mining telecommunication traffic and transactions data for such purposes is controversial, in particular raising issues of privacy. However, our hypothesis is that privacy-sensitive uses are possible and often beneficial enough to warrant considerable research and development efforts. Our work contends that peoples behavior can yield patterns of both significant commercial, and research, value. For such purposes, methods and algorithms for mining telecommunication data to extract commonly used routes and locations, articulated through time-geographical constructs, are described in a case study within the area of transportation planning and analysis. From the outset, these were designed to balance the privacy of subscribers and the added value of mobility patterns derived from their mobile communication traffic and transactions data. Our work directly contrasts the current, commonly held notion that value can only be added to services by directly monitoring the behavior of individuals, such as in current attempts at location-based services. We position our work within relevant legal frameworks for privacy and data protection, and show that our methods comply with such requirements and also follow best-practice

    Contextual Localization Through Network Traffic Analysis

    Get PDF
    opportunitiesforcontentserviceproviderstooptimizethecontent delivery based on user’s location. Since sharing precise location remainsamajorprivacyconcernamongtheusers,manylocationbased services rely on contextual location (e.g. residence, cafe etc.) as opposed to acquiring user’s exact physical location. In this paper, we present PACL (Privacy-Aware Contextual Localizer), which can learn user’s contextual location just by passively monitoring user’s network traffic. PACL can discern a set of vital attributes (statistical and application-based) from user’s network traffic, and predict user’s contextual location with a very high accuracy.WedesignandevaluatePACLusingreal-worldnetwork traces of over 1700 users with over 100 gigabytes of total data. OurresultsshowthatPACL(builtusingdecisiontree)canpredict user’s contextual location with the accuracy of around 87%. I

    Relative Perfect Secrecy: Universally Optimal Strategies and Channel Design

    Get PDF
    corecore