129 research outputs found

    Invisibility and Inverse Problems

    Full text link
    This survey of recent developments in cloaking and transformation optics is an expanded version of the lecture by Gunther Uhlmann at the 2008 Annual Meeting of the American Mathematical Society.Comment: 68 pages, 12 figures. To appear in the Bulletin of the AM

    Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors

    Full text link
    We show that any pair of real symmetric tensors \BGve and \BGm can be realized as the effective electric permittivity and effective magnetic permeability of a metamaterial at a given fixed frequency. The construction starts with two extremely low loss metamaterials, with arbitrarily small microstructure, whose existence is ensured by the work of Bouchitt{\'e} and Bourel and Bouchitt\'e and Schweizer, one having at the given frequency a permittivity tensor with exactly one negative eigenvalue, and a positive permeability tensor, and the other having a positive permittivity tensor, and a permeability tensor having exactly one negative eigenvalue. To achieve the desired effective properties these materials are laminated together in a hierarchical multiple rank laminate structure, with widely separated length scales, and varying directions of lamination, but with the largest length scale still much shorter than the wavelengths and attenuation lengths in the macroscopic effective medium.Comment: 12 pages, no figure

    Invisible waveguides on metal plates for plasmonic analogues of electromagnetic wormholes

    Full text link
    We introduce two types of toroidal metamaterials which are invisible to surface plasmon polaritons (SPPs) propagating on a metal surface. The former is a toroidal handlebody bridging remote holes on the metal surface: It works as a kind of plasmonic counterpart of electromagnetic wormholes. The latter is a toroidal ring lying on the metal surface: This bridges two disconnected metal surfaces i.e. It connects a thin metal cylinder to a flat metal surface with a hole. Full-wave numerical simulations demonstrate that an electromagnetic field propagating inside these metamaterials does not disturb the propagation of SPPs at the metal surface. A multilayered design of these devices is proposed, based on effective medium theory for a set of reduced parameters: The former plasmonic analogue of electromagnetic wormhole requires homogeneous isotropic magnetic layers, while the latter merely requires dielectric layers.Comment: 17 figure

    Electromagnetic wormholes via handlebody constructions

    Full text link
    Cloaking devices are prescriptions of electrostatic, optical or electromagnetic parameter fields (conductivity σ(x)\sigma(x), index of refraction n(x)n(x), or electric permittivity ϵ(x)\epsilon(x) and magnetic permeability μ(x)\mu(x)) which are piecewise smooth on R3\mathbb R^3 and singular on a hypersurface Σ\Sigma, and such that objects in the region enclosed by Σ\Sigma are not detectable to external observation by waves. Here, we give related constructions of invisible tunnels, which allow electromagnetic waves to pass between possibly distant points, but with only the ends of the tunnels visible to electromagnetic imaging. Effectively, these change the topology of space with respect to solutions of Maxwell's equations, corresponding to attaching a handlebody to R3\mathbb R^3. The resulting devices thus function as electromagnetic wormholes.Comment: 25 pages, 6 figures (some color

    Transformation bending device emulated by graded-index waveguide

    Full text link
    We demonstrate that a transformation device can be emulated using a gradient-index waveguide. The effective index of the waveguide is spatially varied by tailoring a gradient thickness dielectric waveguide. Based on this technology, we demonstrate a transformation device guiding visible light around a sharp corner, with low scattering loss and reflection loss. The experimental results are in good agreement with the numerical results.Comment: This paper is published at Optics Express 20, 13006 (2012

    Effectiveness and improvement of cylindrical cloaking with the SHS lining

    Get PDF
    We analyze, both analytically and numerically, the effectiveness of cloaking an infinite cylinder from observations by electromagnetic waves in three dimensions. We show that, as truncated approximations of the ideal permittivity and permeability tensors tend towards the singular ideal cloaking fields, so that the anisotropy ratio tends to infinity, the DD and BB fields blow up near the cloaking surface. We also consider cloaking with and without the SHS (soft-and-hard surface) lining. We demonstrate numerically that cloaking is significantly improved by the SHS lining, with both the far field of the scattered wave significantly reduced and the blow up of DD and BB prevented.Comment: 22 pages, 2 color figure
    corecore