5,463 research outputs found

    Identifying the underlying structure and dynamic interactions in a voting network

    Get PDF
    We analyse the structure and behaviour of a specific voting network using a dynamic structure-based methodology which draws on Q-Analysis and social network theory. Our empirical focus is on the Eurovision Song Contest over a period of 20 years. For a multicultural contest of this kind, one of the key questions is how the quality of a song is judged and how voting groups emerge. We investigate structures that may identify the winner based purely on the topology of the network. This provides a basic framework to identify what the characteristics associated with becoming a winner are, and may help to establish a homogenous criterion for subjective measures such as quality. Further, we measure the importance of voting cliques, and present a dynamic model based on a changing multidimensional measure of connectivity in order to reveal the formation of emerging community structure within the contest. Finally, we study the dynamic behaviour exhibited by the network in order to understand the clustering of voting preferences and the relationship between local and global properties.Comment: 20 pages, 10 figures, 3 tables, submitted to Physica

    ÉlƑlĂ©nyek kollektĂ­v viselkedĂ©sĂ©nek statisztikus fizikĂĄja = Statistical physics of the collective behaviour of organisms

    Get PDF
    Experiments: We have carried out quantitative experiments on the collective motion of cells as a function of their density. A sharp transition could be observed from the random motility in sparse cultures to the flocking of dense islands of cells. Using ultra light GPS devices developed by us, we have determined the existing hierarchical relations within a flock of 10 homing pigeons. Modelling: From the simulations of our new model of flocking we concluded that the information exchange between particles was maximal at the critical point, in which the interplay of such factors as the level of noise, the tendency to follow the direction and the acceleration of others results in large fluctuations. Analysis: We have proposed a novel link-density based approach to finding overlapping communities in large networks. The algorithm used for the implementation of this technique is very efficient for most real networks, and provides full statistics quickly. Correspondingly, we have developed a by now popular, user-friendly, freely downloadable software for finding overlapping communities. Extending our method to the time-dependent regime, we found that large groups in evolving networks persist for longer if they are capable of dynamically altering their membership, thus, an ability to change the group composition results in better adaptability. We also showed that knowledge of the time commitment of members to a given community can be used for estimating the community's lifetime. Experiments: We have carried out quantitative experiments on the collective motion of cells as a function of their density. A sharp transition could be observed from the random motility in sparse cultures to the flocking of dense islands of cells. Using ultra light GPS devices developed by us, we have determined the existing hierarchical relations within a flock of 10 homing pigeons. Modelling: From the simulations of our new model of flocking we concluded that the information exchange between particles was maximal at the critical point, in which the interplay of such factors as the level of noise, the tendency to follow the direction and the acceleration of others results in large fluctuations. Analysis: We have proposed a novel link-density based approach to finding overlapping communities in large networks. The algorithm used for the implementation of this technique is very efficient for most real networks, and provides full statistics quickly. Correspondingly, we have developed a by now popular, user-friendly, freely downloadable software for finding overlapping communities. Extending our method to the time-dependent regime, we found that large groups in evolving networks persist for longer if they are capable of dynamically altering their membership, thus, an ability to change the group composition results in better adaptability. We also showed that knowledge of the time commitment of members to a given community can be used for estimating the community's lifetime

    Characterizing the community structure of complex networks

    Get PDF
    Community structure is one of the key properties of complex networks and plays a crucial role in their topology and function. While an impressive amount of work has been done on the issue of community detection, very little attention has been so far devoted to the investigation of communities in real networks. We present a systematic empirical analysis of the statistical properties of communities in large information, communication, technological, biological, and social networks. We find that the mesoscopic organization of networks of the same category is remarkably similar. This is reflected in several characteristics of community structure, which can be used as ``fingerprints'' of specific network categories. While community size distributions are always broad, certain categories of networks consist mainly of tree-like communities, while others have denser modules. Average path lengths within communities initially grow logarithmically with community size, but the growth saturates or slows down for communities larger than a characteristic size. This behaviour is related to the presence of hubs within communities, whose roles differ across categories. Also the community embeddedness of nodes, measured in terms of the fraction of links within their communities, has a characteristic distribution for each category. Our findings are verified by the use of two fundamentally different community detection methods.Comment: 15 pages, 20 figures, 4 table

    Overlapping modularity at the critical point of k-clique percolation

    Get PDF
    One of the most remarkable social phenomena is the formation of communities in social networks corresponding to families, friendship circles, work teams, etc. Since people usually belong to several different communities at the same time, the induced overlaps result in an extremely complicated web of the communities themselves. Thus, uncovering the intricate community structure of social networks is a non-trivial task with great potential for practical applications, gaining a notable interest in the recent years. The Clique Percolation Method (CPM) is one of the earliest overlapping community finding methods, which was already used in the analysis of several different social networks. In this approach the communities correspond to k-clique percolation clusters, and the general heuristic for setting the parameters of the method is to tune the system just below the critical point of k-clique percolation. However, this rule is based on simple physical principles and its validity was never subject to quantitative analysis. Here we examine the quality of the partitioning in the vicinity of the critical point using recently introduced overlapping modularity measures. According to our results on real social- and other networks, the overlapping modularities show a maximum close to the critical point, justifying the original criteria for the optimal parameter settings.Comment: 20 pages, 6 figure

    Inferring Social Status and Rich Club Effects in Enterprise Communication Networks

    Full text link
    Social status, defined as the relative rank or position that an individual holds in a social hierarchy, is known to be among the most important motivating forces in social behaviors. In this paper, we consider the notion of status from the perspective of a position or title held by a person in an enterprise. We study the intersection of social status and social networks in an enterprise. We study whether enterprise communication logs can help reveal how social interactions and individual status manifest themselves in social networks. To that end, we use two enterprise datasets with three communication channels --- voice call, short message, and email --- to demonstrate the social-behavioral differences among individuals with different status. We have several interesting findings and based on these findings we also develop a model to predict social status. On the individual level, high-status individuals are more likely to be spanned as structural holes by linking to people in parts of the enterprise networks that are otherwise not well connected to one another. On the community level, the principle of homophily, social balance and clique theory generally indicate a "rich club" maintained by high-status individuals, in the sense that this community is much more connected, balanced and dense. Our model can predict social status of individuals with 93% accuracy.Comment: 13 pages, 4 figure

    Topics in social network analysis and network science

    Full text link
    This chapter introduces statistical methods used in the analysis of social networks and in the rapidly evolving parallel-field of network science. Although several instances of social network analysis in health services research have appeared recently, the majority involve only the most basic methods and thus scratch the surface of what might be accomplished. Cutting-edge methods using relevant examples and illustrations in health services research are provided

    Community structures and role detection in music networks

    Full text link
    We analyze the existence of community structures in two different social networks obtained from similarity and collaborative features between musical artists. Our analysis reveals some characteristic organizational patterns and provides information about the driving forces behind the growth of the networks. In the similarity network, we find a strong correlation between clusters of artists and musical genres. On the other hand, the collaboration network shows two different kinds of communities: rather small structures related to music bands and geographic zones, and much bigger communities built upon collaborative clusters with a high number of participants related through the period the artists were active. Finally, we detect the leading artists inside their corresponding communities and analyze their roles in the network by looking at a few topological properties of the nodes.Comment: 14 pages 7 figure

    Detecting Community Structure in Dynamic Social Networks Using the Concept of Leadership

    Full text link
    Detecting community structure in social networks is a fundamental problem empowering us to identify groups of actors with similar interests. There have been extensive works focusing on finding communities in static networks, however, in reality, due to dynamic nature of social networks, they are evolving continuously. Ignoring the dynamic aspect of social networks, neither allows us to capture evolutionary behavior of the network nor to predict the future status of individuals. Aside from being dynamic, another significant characteristic of real-world social networks is the presence of leaders, i.e. nodes with high degree centrality having a high attraction to absorb other members and hence to form a local community. In this paper, we devised an efficient method to incrementally detect communities in highly dynamic social networks using the intuitive idea of importance and persistence of community leaders over time. Our proposed method is able to find new communities based on the previous structure of the network without recomputing them from scratch. This unique feature, enables us to efficiently detect and track communities over time rapidly. Experimental results on the synthetic and real-world social networks demonstrate that our method is both effective and efficient in discovering communities in dynamic social networks
    • 

    corecore