7,329 research outputs found

    Motif Clustering and Overlapping Clustering for Social Network Analysis

    Full text link
    Motivated by applications in social network community analysis, we introduce a new clustering paradigm termed motif clustering. Unlike classical clustering, motif clustering aims to minimize the number of clustering errors associated with both edges and certain higher order graph structures (motifs) that represent "atomic units" of social organizations. Our contributions are two-fold: We first introduce motif correlation clustering, in which the goal is to agnostically partition the vertices of a weighted complete graph so that certain predetermined "important" social subgraphs mostly lie within the same cluster, while "less relevant" social subgraphs are allowed to lie across clusters. We then proceed to introduce the notion of motif covers, in which the goal is to cover the vertices of motifs via the smallest number of (near) cliques in the graph. Motif cover algorithms provide a natural solution for overlapping clustering and they also play an important role in latent feature inference of networks. For both motif correlation clustering and its extension introduced via the covering problem, we provide hardness results, algorithmic solutions and community detection results for two well-studied social networks

    Community structure and ethnic preferences in school friendship networks

    Get PDF
    Recently developed concepts and techniques of analyzing complex systems provide new insight into the structure of social networks. Uncovering recurrent preferences and organizational principles in such networks is a key issue to characterize them. We investigate school friendship networks from the Add Health database. Applying threshold analysis, we find that the friendship networks do not form a single connected component through mutual strong nominations within a school, while under weaker conditions such interconnectedness is present. We extract the networks of overlapping communities at the schools (c-networks) and find that they are scale free and disassortative in contrast to the direct friendship networks, which have an exponential degree distribution and are assortative. Based on the network analysis we study the ethnic preferences in friendship selection. The clique percolation method we use reveals that when in minority, the students tend to build more densely interconnected groups of friends. We also find an asymmetry in the behavior of black minorities in a white majority as compared to that of white minorities in a black majority.Comment: submitted to Physica

    Structure of n-clique networks embedded in a complex network

    Get PDF
    We propose the n-clique network as a powerful tool for understanding global structures of combined highly-interconnected subgraphs, and provide theoretical predictions for statistical properties of the n-clique networks embedded in a complex network using the degree distribution and the clustering spectrum. Furthermore, using our theoretical predictions, we find that the statistical properties are invariant between 3-clique networks and original networks for several observable real-world networks with the scale-free connectivity and the hierarchical modularity. The result implies that structural properties are identical between the 3-clique networks and the original networks.Comment: 12 pages, 5 figure

    Compressive Network Analysis

    Full text link
    Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets

    Weighted network modules

    Get PDF
    The inclusion of link weights into the analysis of network properties allows a deeper insight into the (often overlapping) modular structure of real-world webs. We introduce a clustering algorithm (CPMw, Clique Percolation Method with weights) for weighted networks based on the concept of percolating k-cliques with high enough intensity. The algorithm allows overlaps between the modules. First, we give detailed analytical and numerical results about the critical point of weighted k-clique percolation on (weighted) Erdos-Renyi graphs. Then, for a scientist collaboration web and a stock correlation graph we compute three-link weight correlations and with the CPMw the weighted modules. After reshuffling link weights in both networks and computing the same quantities for the randomised control graphs as well, we show that groups of 3 or more strong links prefer to cluster together in both original graphs.Comment: 19 pages, 7 figure

    On combinatorial optimisation in analysis of protein-protein interaction and protein folding networks

    Get PDF
    Abstract: Protein-protein interaction networks and protein folding networks represent prominent research topics at the intersection of bioinformatics and network science. In this paper, we present a study of these networks from combinatorial optimisation point of view. Using a combination of classical heuristics and stochastic optimisation techniques, we were able to identify several interesting combinatorial properties of biological networks of the COSIN project. We obtained optimal or near-optimal solutions to maximum clique and chromatic number problems for these networks. We also explore patterns of both non-overlapping and overlapping cliques in these networks. Optimal or near-optimal solutions to partitioning of these networks into non-overlapping cliques and to maximum independent set problem were discovered. Maximal cliques are explored by enumerative techniques. Domination in these networks is briefly studied, too. Applications and extensions of our findings are discussed

    Modeling the clustering in citation networks

    Full text link
    For the study of citation networks, a challenging problem is modeling the high clustering. Existing studies indicate that the promising way to model the high clustering is a copying strategy, i.e., a paper copies the references of its neighbour as its own references. However, the line of models highly underestimates the number of abundant triangles observed in real citation networks and thus cannot well model the high clustering. In this paper, we point out that the failure of existing models lies in that they do not capture the connecting patterns among existing papers. By leveraging the knowledge indicated by such connecting patterns, we further propose a new model for the high clustering in citation networks. Experiments on two real world citation networks, respectively from a special research area and a multidisciplinary research area, demonstrate that our model can reproduce not only the power-law degree distribution as traditional models but also the number of triangles, the high clustering coefficient and the size distribution of co-citation clusters as observed in these real networks
    corecore