233 research outputs found

    Clique-width for graph classes closed under complementation.

    Get PDF
    Clique-width is an important graph parameter due to its algorithmic and structural properties. A graph class is hereditary if it can be characterized by a (not necessarily finite) set H of forbidden induced subgraphs. We initiate a systematic study into the boundedness of clique-width of hereditary graph classes closed under complementation. First, we extend the known classification for the |H|=1 case by classifying the boundedness of clique-width for every set H of self-complementary graphs. We then completely settle the |H|=2 case. In particular, we determine one new class of (H1, complement of H1)-free graphs of bounded clique-width (as a side effect, this leaves only six classes of (H1, H2)-free graphs, for which it is not known whether their clique-width is bounded). Once we have obtained the classification of the |H|=2 case, we research the effect of forbidding self-complementary graphs on the boundedness of clique-width. Surprisingly, we show that for a set F of self-complementary graphs on at least five vertices, the classification of the boundedness of clique-width for ({H1, complement of H1} + F)-free graphs coincides with the one for the |H|=2 case if and only if F does not include the bull (the only non-empty self-complementary graphs on fewer than five vertices are P_1 and P_4, and P_4-free graphs have clique-width at most 2). Finally, we discuss the consequences of our results for COLOURING

    Induced Minor Free Graphs: Isomorphism and Clique-width

    Full text link
    Given two graphs GG and HH, we say that GG contains HH as an induced minor if a graph isomorphic to HH can be obtained from GG by a sequence of vertex deletions and edge contractions. We study the complexity of Graph Isomorphism on graphs that exclude a fixed graph as an induced minor. More precisely, we determine for every graph HH that Graph Isomorphism is polynomial-time solvable on HH-induced-minor-free graphs or that it is GI-complete. Additionally, we classify those graphs HH for which HH-induced-minor-free graphs have bounded clique-width. These two results complement similar dichotomies for graphs that exclude a fixed graph as an induced subgraph, minor, or subgraph.Comment: 16 pages, 5 figures. An extended abstract of this paper previously appeared in the proceedings of the 41st International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2015

    Shrub-depth: Capturing Height of Dense Graphs

    Full text link
    The recent increase of interest in the graph invariant called tree-depth and in its applications in algorithms and logic on graphs led to a natural question: is there an analogously useful "depth" notion also for dense graphs (say; one which is stable under graph complementation)? To this end, in a 2012 conference paper, a new notion of shrub-depth has been introduced, such that it is related to the established notion of clique-width in a similar way as tree-depth is related to tree-width. Since then shrub-depth has been successfully used in several research papers. Here we provide an in-depth review of the definition and basic properties of shrub-depth, and we focus on its logical aspects which turned out to be most useful. In particular, we use shrub-depth to give a characterization of the lower ω{\omega} levels of the MSO1 transduction hierarchy of simple graphs

    FO-Definability of Shrub-Depth

    Get PDF
    Shrub-depth is a graph invariant often considered as an extension of tree-depth to dense graphs. We show that the model-checking problem of monadic second-order logic on a class of graphs of bounded shrub-depth can be decided by AC^0-circuits after a precomputation on the formula. This generalizes a similar result on graphs of bounded tree-depth [Y. Chen and J. Flum, 2018]. At the core of our proof is the definability in first-order logic of tree-models for graphs of bounded shrub-depth

    The average cut-rank of graphs

    Full text link
    The cut-rank of a set XX of vertices in a graph GG is defined as the rank of the X×(V(G)X) X \times (V(G)\setminus X) matrix over the binary field whose (i,j)(i,j)-entry is 11 if the vertex ii in XX is adjacent to the vertex jj in V(G)XV(G)\setminus X and 00 otherwise. We introduce the graph parameter called the average cut-rank of a graph, defined as the expected value of the cut-rank of a random set of vertices. We show that this parameter does not increase when taking vertex-minors of graphs and a class of graphs has bounded average cut-rank if and only if it has bounded neighborhood diversity. This allows us to deduce that for each real α\alpha, the list of induced-subgraph-minimal graphs having average cut-rank larger than (or at least) α\alpha is finite. We further refine this by providing an upper bound on the size of obstruction and a lower bound on the number of obstructions for average cut-rank at most (or smaller than) α\alpha for each real α0\alpha\ge0. Finally, we describe explicitly all graphs of average cut-rank at most 3/23/2 and determine up to 3/23/2 all possible values that can be realized as the average cut-rank of some graph.Comment: 22 pages, 1 figure. The bound xnx_n is corrected. Accepted to European J. Combinatoric
    corecore