139 research outputs found

    The existence of designs via iterative absorption: hypergraph FF-designs for arbitrary FF

    Full text link
    We solve the existence problem for FF-designs for arbitrary rr-uniform hypergraphs~FF. This implies that given any rr-uniform hypergraph~FF, the trivially necessary divisibility conditions are sufficient to guarantee a decomposition of any sufficiently large complete rr-uniform hypergraph into edge-disjoint copies of~FF, which answers a question asked e.g.~by Keevash. The graph case r=2r=2 was proved by Wilson in 1975 and forms one of the cornerstones of design theory. The case when~FF is complete corresponds to the existence of block designs, a problem going back to the 19th century, which was recently settled by Keevash. In particular, our argument provides a new proof of the existence of block designs, based on iterative absorption (which employs purely probabilistic and combinatorial methods). Our main result concerns decompositions of hypergraphs whose clique distribution fulfills certain regularity constraints. Our argument allows us to employ a `regularity boosting' process which frequently enables us to satisfy these constraints even if the clique distribution of the original hypergraph does not satisfy them. This enables us to go significantly beyond the setting of quasirandom hypergraphs considered by Keevash. In particular, we obtain a resilience version and a decomposition result for hypergraphs of large minimum degree.Comment: This version combines the two manuscripts `The existence of designs via iterative absorption' (arXiv:1611.06827v1) and the subsequent `Hypergraph F-designs for arbitrary F' (arXiv:1706.01800) into a single paper, which will appear in the Memoirs of the AM

    A local construction of the Smith normal form of a matrix polynomial

    Get PDF
    We present an algorithm for computing a Smith form with multipliers of a regular matrix polynomial over a field. This algorithm differs from previous ones in that it computes a local Smith form for each irreducible factor in the determinant separately and then combines them into a global Smith form, whereas other algorithms apply a sequence of unimodular row and column operations to the original matrix. The performance of the algorithm in exact arithmetic is reported for several test cases.Comment: 26 pages, 6 figures; introduction expanded, 10 references added, two additional tests performe

    Um problema de dominação eterna : classes de grafos, métodos de resolução e perspectiva prática

    Get PDF
    Orientadores: Cid Carvalho de Souza, Orlando LeeTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O problema do conjunto dominante m-eterno é um problema de otimização em grafos que tem sido muito estudado nos últimos anos e para o qual se têm listado aplicações em vários domínios. O objetivo é determinar o número mínimo de guardas que consigam defender eternamente ataques nos vértices de um grafo; denominamos este número o índice de dominação m-eterna do grafo. Nesta tese, estudamos o problema do conjunto dominante m-eterno: lidamos com aspectos de natureza teórica e prática e abordamos o problema restrito a classes especícas de grafos e no caso geral. Examinamos o problema do conjunto dominante m-eterno com respeito a duas classes de grafos: os grafos de Cayley e os conhecidos grafos de intervalo próprios. Primeiramente, mostramos ser inválido um resultado sobre os grafos de Cayley presente na literatura, provamos que o resultado é válido para uma subclasse destes grafos e apresentamos outros achados. Em segundo lugar, fazemos descobertas em relação aos grafos de intervalo próprios, incluindo que, para estes grafos, o índice de dominação m-eterna é igual à cardinalidade máxima de um conjunto independente e, por consequência, o índice de dominação m-eterna pode ser computado em tempo linear. Tratamos de uma questão que é fundamental para aplicações práticas do problema do conjunto dominante m-eterno, mas que tem recebido relativamente pouca atenção. Para tanto, introduzimos dois métodos heurísticos, nos quais formulamos e resolvemos modelos de programação inteira e por restrições para computar limitantes ao índice de dominação m-eterna. Realizamos um vasto experimento para analisar o desempenho destes métodos. Neste processo, geramos um benchmark contendo 750 instâncias e efetuamos uma avaliação prática de limitantes ao índice de dominação m-eterna disponíveis na literatura. Por m, propomos e implementamos um algoritmo exato para o problema do conjunto dominante m-eterno e contribuímos para o entendimento da sua complexidade: provamos que a versão de decisão do problema é NP-difícil. Pelo que temos conhecimento, o algoritmo proposto foi o primeiro método exato a ser desenvolvido e implementado para o problema do conjunto dominante m-eternoAbstract: The m-eternal dominating set problem is a graph-protection optimization problem that has been an active research topic in the recent years and reported to have applications in various domains. It asks for the minimum number of guards that can eternally defend attacks on the vertices of a graph; this number is called the m-eternal domination number of the graph. In this thesis, we study the m-eternal dominating set problem by dealing with aspects of theoretical and practical nature and tackling the problem restricted to specic classes of graphs and in the general case. We examine the m-eternal dominating set problem for two classes of graphs: Cayley graphs and the well-known proper interval graphs. First, we disprove a published result on the m-eternal domination number of Cayley graphs, show that the result is valid for a subclass of these graphs, and report further ndings. Secondly, we present several discoveries regarding proper interval graphs, including that, for these graphs, the m- eternal domination number equals the maximum size of an independent set and, as a consequence, the m-eternal domination number can be computed in linear time. We address an issue that is fundamental to practical applications of the m-eternal dominating set problem but that has received relatively little attention. To this end, we introduce two heuristic methods, in which we propose and solve integer and constraint programming models to compute bounds on the m-eternal domination number. By performing an extensive experiment to validate the features of these methods, we generate a 750-instance benchmark and carry out a practical evaluation of bounds for the m-eternal domination number available in the literature. Finally, we propose and implement an exact algorithm for the m-eternal dominating set problem and contribute to the knowledge on its complexity: we prove that the decision version of the problem is NP-hard. As far as we know, the proposed algorithm was the first developed and implemented exact method for the m-eternal dominating set problemDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação141964/2013-8CAPESCNP
    corecore