37 research outputs found

    Clique decompositions of multipartite graphs and completion of Latin squares

    Get PDF
    Our main result essentially reduces the problem of finding an edge-decomposition of a balanced r-partite graph of large minimum degree into r-cliques to the problem of finding a fractional r-clique decomposition or an approximate one. Together with very recent results of Bowditch and Dukes as well as Montgomery on fractional decompositions into triangles and cliques respectively, this gives the best known bounds on the minimum degree which ensures an edge-decomposition of an r-partite graph into r-cliques (subject to trivially necessary divisibility conditions). The case of triangles translates into the setting of partially completed Latin squares and more generally the case of r-cliques translates into the setting of partially completed mutually orthogonal Latin squares.Comment: 40 pages. To appear in Journal of Combinatorial Theory, Series

    Completion and deficiency problems

    Full text link
    Given a partial Steiner triple system (STS) of order nn, what is the order of the smallest complete STS it can be embedded into? The study of this question goes back more than 40 years. In this paper we answer it for relatively sparse STSs, showing that given a partial STS of order nn with at most rεn2r \le \varepsilon n^2 triples, it can always be embedded into a complete STS of order n+O(r)n+O(\sqrt{r}), which is asymptotically optimal. We also obtain similar results for completions of Latin squares and other designs. This suggests a new, natural class of questions, called deficiency problems. Given a global spanning property P\mathcal{P} and a graph GG, we define the deficiency of the graph GG with respect to the property P\mathcal{P} to be the smallest positive integer tt such that the join GKtG\ast K_t has property P\mathcal{P}. To illustrate this concept we consider deficiency versions of some well-studied properties, such as having a KkK_k-decomposition, Hamiltonicity, having a triangle-factor and having a perfect matching in hypergraphs. The main goal of this paper is to propose a systematic study of these problems; thus several future research directions are also given

    A lower bound on HMOLS with equal sized holes

    Full text link
    It is known that N(n)N(n), the maximum number of mutually orthogonal latin squares of order nn, satisfies the lower bound N(n)n1/14.8N(n) \ge n^{1/14.8} for large nn. For h2h\ge 2, relatively little is known about the quantity N(hn)N(h^n), which denotes the maximum number of `HMOLS' or mutually orthogonal latin squares having a common equipartition into nn holes of a fixed size hh. We generalize a difference matrix method that had been used previously for explicit constructions of HMOLS. An estimate of R.M. Wilson on higher cyclotomic numbers guarantees our construction succeeds in suitably large finite fields. Feeding this into a generalized product construction, we are able to establish the lower bound N(hn)(logn)1/δN(h^n) \ge (\log n)^{1/\delta} for any δ>2\delta>2 and all n>n0(h,δ)n > n_0(h,\delta)

    The linear system for Sudoku and a fractional completion threshold

    Full text link
    We study a system of linear equations associated with Sudoku latin squares. The coefficient matrix MM of the normal system has various symmetries arising from Sudoku. From this, we find the eigenvalues and eigenvectors of MM, and compute a generalized inverse. Then, using linear perturbation methods, we obtain a fractional completion guarantee for sufficiently large and sparse rectangular-box Sudoku puzzles

    Pseudorandom hypergraph matchings

    Full text link
    A celebrated theorem of Pippenger states that any almost regular hypergraph with small codegrees has an almost perfect matching. We show that one can find such an almost perfect matching which is `pseudorandom', meaning that, for instance, the matching contains as many edges from a given set of edges as predicted by a heuristic argument.Comment: 14 page
    corecore