44 research outputs found

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Degree and neighborhood conditions for hamiltonicity of claw-free graphs

    Get PDF
    For a graph H , let σ t ( H ) = min { Σ i = 1 t d H ( v i ) | { v 1 , v 2 , … , v t } is an independent set in H } and let U t ( H ) = min { | ⋃ i = 1 t N H ( v i ) | | { v 1 , v 2 , ⋯ , v t } is an independent set in H } . We show that for a given number ϵ and given integers p ≥ t \u3e 0 , k ∈ { 2 , 3 } and N = N ( p , ϵ ) , if H is a k -connected claw-free graph of order n \u3e N with δ ( H ) ≥ 3 and its Ryjác̆ek’s closure c l ( H ) = L ( G ) , and if d t ( H ) ≥ t ( n + ϵ ) ∕ p where d t ( H ) ∈ { σ t ( H ) , U t ( H ) } , then either H is Hamiltonian or G , the preimage of L ( G ) , can be contracted to a k -edge-connected K 3 -free graph of order at most max { 4 p − 5 , 2 p + 1 } and without spanning closed trails. As applications, we prove the following for such graphs H of order n with n sufficiently large: (i) If k = 2 , δ ( H ) ≥ 3 , and for a given t ( 1 ≤ t ≤ 4 ), then either H is Hamiltonian or c l ( H ) = L ( G ) where G is a graph obtained from K 2 , 3 by replacing each of the degree 2 vertices by a K 1 , s ( s ≥ 1 ). When t = 4 and d t ( H ) = σ 4 ( H ) , this proves a conjecture in Frydrych (2001). (ii) If k = 3 , δ ( H ) ≥ 24 , and for a given t ( 1 ≤ t ≤ 10 ) d t ( H ) \u3e t ( n + 5 ) 10 , then H is Hamiltonian. These bounds on d t ( H ) in (i) and (ii) are sharp. It unifies and improves several prior results on conditions involved σ t and U t for the hamiltonicity of claw-free graphs. Since the number of graphs of orders at most max { 4 p − 5 , 2 p + 1 } are fixed for given p , improvements to (i) or (ii) by increasing the value of p are possible with the help of a computer

    Extending perfect matchings to Hamiltonian cycles in line graphs

    Full text link
    A graph admitting a perfect matching has the Perfect-Matching-Hamiltonian property (for short the PMH-property) if each of its perfect matchings can be extended to a Hamiltonian cycle. In this paper we establish some sufficient conditions for a graph GG in order to guarantee that its line graph L(G)L(G) has the PMH-property. In particular, we prove that this happens when GG is (i) a Hamiltonian graph with maximum degree at most 33, (ii) a complete graph, or (iii) an arbitrarily traceable graph. Further related questions and open problems are proposed along the paper.Comment: 12 pages, 4 figure

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Eulerian subgraphs and Hamiltonicity of claw -free graphs

    Get PDF
    Let C(l, k) denote the class of 2-edge-connected graphs of order n such that a graph G ∈ C(l, k) if and only if for every edge cut S ⊆ E(G) with |S| ≤ 3, each component of G - S has order at least n-kl . We prove that If G ∈ C(6, 0), then G is supereulerian if and only if G cannot be contracted to K2,3, K 2,5 or K2,3(e), where e ∈ E(K2,3) and K2,3(e) stands for a graph obtained from K2,3 by replacing e by a path of length 2. Previous results by Catlin and Li, and by Broersma and Xiong are extended.;We also investigate the supereulerian graph problems within planar graphs, and we prove that if a 2-edge-connected planar graph G is at most three edges short of having two edge-disjoint spanning trees, then G is supereulerian except a few classes of graphs. This is applied to show the existence of spanning Eulerian subgraphs in planar graphs with small edge cut conditions. We determine several extremal bounds for planar graphs to be supereulerian.;Kuipers and Veldman conjectured that any 3-connected claw-free graph with order n and minimum degree delta ≥ n+610 is Hamiltonian for n sufficiently large. We prove that if H is a 3-connected claw-free graph with sufficiently large order n, and if delta(H) ≥ n+510 , then either H is hamiltonian, or delta( H) = n+510 and the Ryjac˘ek\u27s closure cl( H) of H is the line graph of a graph obtained from the Petersen graph P10 by adding n-1510 pendant edges at each vertex of P10

    Master index of volumes 161–170

    Get PDF

    Degree Conditions for Hamiltonian Properties of Claw-free Graphs

    Get PDF
    This thesis contains many new contributions to the field of hamiltonian graph theory, a very active subfield of graph theory. In particular, we have obtained new sufficient minimum degree and degree sum conditions to guarantee that the graphs satisfying these conditions, or their line graphs, admit a Hamilton cycle (or a Hamilton path), unless they have a small order or they belong to well-defined classes of exceptional graphs. Here, a Hamilton cycle corresponds to traversing the vertices and edges of the graph in such a way that all their vertices are visited exactly once, and we return to our starting vertex (similarly, a Hamilton path reflects a similar way of traversing the graph, but without the last restriction, so we might terminate at a different vertex). In Chapter 1, we presented an introduction to the topics of this thesis together with Ryjáček’s closure for claw-free graphs, Catlin’s reduction method, and the reduction of the core of a graph. In Chapter 2, we found the best possible bounds for the minimum degree condition and the minimum degree sums condition of adjacent vertices for traceability of 2-connected claw-free graph, respectively. In addition, we decreased these lower bounds with one family of well characterized exceptional graphs. In Chapter 3, we extended recent results about the conjecture of Benhocine et al. and results about the conjecture of Z.-H Chen and H.-J Lai. In Chapters 4, 5 and 6, we have successfully tried to unify and extend several existing results involving the degree and neighborhood conditions for the hamiltonicity and traceability of 2-connected claw-free graphs. Throughout this thesis, we have investigated the existence of Hamilton cycles and Hamilton paths under different types of degree and neighborhood conditions, including minimum degree conditions, minimum degree sum conditions on adjacent pairs of vertices, minimum degree sum conditions over all independent sets of t vertices of a graph, minimum cardinality conditions on the neighborhood union over all independent sets of t vertices of a graph, as well minimum cardinality conditions on the neighborhood union over all t vertex sets of a graph. Despite our new contributions, many problems and conjectures remain unsolved

    Graphs and subgraphs with bounded degree

    Get PDF
    "The topology of a network (such as a telecommunications, multiprocessor, or local area network, to name just a few) is usually modelled by a graph in which vertices represent 'nodes' (stations or processors) while undirected or directed edges stand for 'links' or other types of connections, physical or virtual. A cycle that contains every vertex of a graph is called a hamiltonian cycle and a graph which contains a hamiltonian cycle is called a hamiltonian graph. The problem of the existence of a hamiltonian cycle is closely related to the well known problem of a travelling salesman. These problems are NP-complete and NP-hard, respectively. While some necessary and sufficient conditions are known, to date, no practical characterization of hamiltonian graphs has been found. There are several ways to generalize the notion of a hamiltonian cycle. In this thesis we make original contributions in two of them, namely k-walks and r-trestles." --Abstract.Doctor of Philosoph

    Index

    Get PDF
    corecore