4,127 research outputs found

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs

    Get PDF
    Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G = (V, E) and an integer k ≥ 0, we ask whether there exists a subset V ′ ⊆ V with | V ′ | ≥ k such that the induced subgraph G [V ′ ] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time frac(1, Δ + 1)-approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.Facultad de Ciencias Exacta

    On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs

    Get PDF
    Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G = (V, E) and an integer k ≥ 0, we ask whether there exists a subset V ′ ⊆ V with | V ′ | ≥ k such that the induced subgraph G [V ′ ] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time frac(1, Δ + 1)-approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.Facultad de Ciencias Exacta

    The complexity of clique graph recognition

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C (G) the clique family of G. The clique graph of G, denoted by K (G), is the intersection graph of C (G). Say that G is a clique graph if there exists a graph H such that G = K (H). The clique graph recognition problem asks whether a given graph is a clique graph. A sufficient condition was given by Hamelink in 1968, and a characterization was proposed by Roberts and Spencer in 1971. However, the time complexity of the problem of recognizing clique graphs is a long-standing open question. We prove that the clique graph recognition problem is NP-complete.Facultad de Ciencias Exacta

    On maximizing clique, clique-Helly and hereditary clique-Helly induced subgraphs

    Get PDF
    Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently, we presented a proof that the clique graph recognition problem is NP-complete [L. Alcón, L. Faria, C.M.H. de Figueiredo, M. Gutierrez, Clique graph recognition is NP-complete, in: Proc. WG 2006, in: Lecture Notes in Comput. Sci., vol. 4271, Springer, 2006, pp. 269-277]. In this work, we consider the decision problems: given a graph G = (V, E) and an integer k ≥ 0, we ask whether there exists a subset V ′ ⊆ V with | V ′ | ≥ k such that the induced subgraph G [V ′ ] of G is, variously, a clique, clique-Helly or hereditary clique-Helly graph. The first problem is clearly NP-complete, from the above reference; we prove that the other two decision problems mentioned are NP-complete, even for maximum degree 6 planar graphs. We consider the corresponding maximization problems of finding a maximum induced subgraph that is, respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems are Max SNP-hard, even for maximum degree 6 graphs. We show a general polynomial-time frac(1, Δ + 1)-approximation algorithm for these problems when restricted to graphs with fixed maximum degree Δ. We generalize these results to other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.Facultad de Ciencias Exacta

    Split clique graph complexity

    Get PDF
    A complete set of a graph G is a subset of vertices inducing a complete subgraph. A clique is a maximal complete set. Denote by C(G) the clique family of G. The clique graph of G, denoted by K(G), is the intersection graph of C(G). Say that G is a clique graph if there exists a graph H such that G=K(H). The clique graph recognition problem, a long-standing open question posed in 1971, asks whether a given graph is a clique graph and it was recently proved to be NP-complete even for a graph G with maximum degree 14 and maximum clique size 12. Hence, if P ≠ NP, the study of graph classes where the problem can be proved to be polynomial, or of more restricted graph classes where the problem remains NP-complete is justified. We present a proof that given a split graph G=(V,E) with partition (K,S) for V, where K is a complete set and S is a stable set, deciding whether there is a graph H such that G is the clique graph of H is NP-complete. As a byproduct, we prove that determining whether a given set family admits a spanning family satisfying the Helly property is NP-complete. Our result is optimum in the sense that each vertex of the independent set of our split instance has degree at most 3, whereas when each vertex of the independent set has degree at most 2 the problem is polynomial, since it is reduced to the problem of checking whether the clique family of the graph satisfies the Helly property. Additionally, we show three split graph subclasses for which the problem is polynomially solvable: the subclass where each vertex of S has a private neighbor, the subclass where |S|≤3, and the subclass where |K|≤4.Facultad de Ciencias Exacta

    A generalization of the helly property applied to the cliques of a graph

    Get PDF
    Let p ≥ 1 and q ≥ 0 be integers. A family S of sets is (p,q)-intersecting when every subfamily S' ⊆ S formed by p or less members has total intersection of cardinality at least q. A family F of sets is (p,q)-Helly when every (p,q)-intersecting subfamily F' ⊆ F has total intersection of cardinality at least q. A graph G is a (p, q)- clique-Helly graph when its family of cliques (maximal complete sets) is (P, q)-Helly. According to this terminology, the usual Helly property and the clique-Helly graphs correspond to the case p = 2, q = 1. In this work we present characterizations for (p,q)-Helly families of sets and (p,q)-clique-Helly graphs. For fixed p,q those characterizations lead to polynomial-time recognition algorithms. When p or q is not fixed, it is shown that the recognition of (p,q)-clique-Helly graphs is NP-hard. We also extend further the notions presented, by defining the (p,q, r)-Helly property (which holds when every (p, q)-intersecting subfamily F' ⊆ F has total intersection of cardinality at least r) and giving a way of recognizing (p, q, r)-Helly families in terms of the (p, q)-Helly property

    A structure theorem for graphs with no cycle with a unique chord and its consequences

    Get PDF
    We give a structural description of the class C of graphs that do not contain a cycle with a unique chord as an induced subgraph. Our main theorem states that any connected graph in C is a either in some simple basic class or has a decomposition. Basic classes are cliques, bipartite graphs with one side containing only nodes of degree two and induced subgraph of the famous Heawood or Petersen graph. Decompositions are node cutsets consisting of one or two nodes and edge cutsets called 1-joins. Our decomposition theorem actually gives a complete structure theorem for C, i.e. every graph in C can be built from basic graphs that can be explicitly constructed, and gluing them together by prescribed composition operations ; and all graphs built this way are in C. This has several consequences : an O(nm)-time algorithm to decide whether a graph is in C, an O(n+m)-time algorithm that finds a maximum clique of any graph in C and an O(nm)-time coloring algorithm for graphs in C. We prove that every graph in C is either 3-colorable or has a coloring with ω colors where ω is the size of a largest clique. The problem of finding a maximum stable set for a graph in C is known to be NP-hard.Cycle with a unique chord, decomposition, structure, detection, recognition, Heawood graph, Petersen graph, coloring.
    corecore