198 research outputs found

    Detecting Bat Calls from Audio Recordings

    Get PDF
    Bat monitoring is commonly based on audio analysis. By collecting audio recordings from large areas and analysing their content, it is possible estimate distributions of bat species and changes in them. It is easy to collect a large amount of audio recordings by leaving automatic recording units in nature and collecting them later. However, it takes a lot of time and effort to analyse these recordings. Because of that, there is a great need for automatic tools. We developed a program for detecting bat calls automatically from audio recordings. The program is designed for recordings that are collected from Finland with the AudioMoth recording device. Our method is based on a median clipping method that has previously shown promising results in the field of bird song detection. We add several modifications to the basic method in order to make it work well for our purpose. We use real-world field recordings that we have annotated to evaluate the performance of the detector and compare it to two other freely available programs (Kaleidoscope and Bat Detective). Our method showed good results and got the best F2-score in the comparison

    Sparse machine learning methods with applications in multivariate signal processing

    Get PDF
    This thesis details theoretical and empirical work that draws from two main subject areas: Machine Learning (ML) and Digital Signal Processing (DSP). A unified general framework is given for the application of sparse machine learning methods to multivariate signal processing. In particular, methods that enforce sparsity will be employed for reasons of computational efficiency, regularisation, and compressibility. The methods presented can be seen as modular building blocks that can be applied to a variety of applications. Application specific prior knowledge can be used in various ways, resulting in a flexible and powerful set of tools. The motivation for the methods is to be able to learn and generalise from a set of multivariate signals. In addition to testing on benchmark datasets, a series of empirical evaluations on real world datasets were carried out. These included: the classification of musical genre from polyphonic audio files; a study of how the sampling rate in a digital radar can be reduced through the use of Compressed Sensing (CS); analysis of human perception of different modulations of musical key from Electroencephalography (EEG) recordings; classification of genre of musical pieces to which a listener is attending from Magnetoencephalography (MEG) brain recordings. These applications demonstrate the efficacy of the framework and highlight interesting directions of future research

    Spontaneous Subtle Expression Detection and Recognition based on Facial Strain

    Full text link
    Optical strain is an extension of optical flow that is capable of quantifying subtle changes on faces and representing the minute facial motion intensities at the pixel level. This is computationally essential for the relatively new field of spontaneous micro-expression, where subtle expressions can be technically challenging to pinpoint. In this paper, we present a novel method for detecting and recognizing micro-expressions by utilizing facial optical strain magnitudes to construct optical strain features and optical strain weighted features. The two sets of features are then concatenated to form the resultant feature histogram. Experiments were performed on the CASME II and SMIC databases. We demonstrate on both databases, the usefulness of optical strain information and more importantly, that our best approaches are able to outperform the original baseline results for both detection and recognition tasks. A comparison of the proposed method with other existing spatio-temporal feature extraction approaches is also presented.Comment: 21 pages (including references), single column format, accepted to Signal Processing: Image Communication journa

    Emotion Recognition with Deep Neural Networks

    Get PDF
    RÉSUMÉ La reconnaissance automatique des émotions humaines a été étudiée pendant des décennies. Il est l'un des éléments clés de l'interaction homme-ordinateur dans les domaines des soins de santé, de l'éducation, du divertissement et de la publicité. La reconnaissance des émotions est une tâche difficile car elle repose sur la prédiction des états émotionnels abstraits à partir de données d'entrée multimodales. Ces modalités comprennent la vidéo, l’audio et des signaux physiologiques. La modalité visuelle est l'un des canaux les plus informatifs. Notons en particulier les expressions du visage qui sont un très fort indicateur de l'état émotionnel d'un sujet. Un système automatisé commun de reconnaissance d'émotion comprend plusieurs étapes de traitement, dont chacune doit être réglée et intégrée dans un pipeline. Ces pipelines sont souvent ajustés à la main, et ce processus peut introduire des hypothèses fortes sur les propriétés de la tâche et des données. Limiter ces hypothèses et utiliser un apprentissage automatique du pipeline de traitement de données donne souvent des solutions plus générales. Au cours des dernières années, il a été démontré que les méthodes d'apprentissage profond mènent à de bonnes représentations pour diverses modalités. Pour de nombreux benchmarks, l'écart diminue rapidement entre les algorithmes de pointe basés sur des réseaux neuronaux profonds et la performance humaine. Ces réseaux apprennent hiérarchies de caractéristiques. Avec la profondeur croissante, ces hiérarchies peuvent décrire des concepts plus abstraits. Cette progrès suggèrent d'explorer les applications de ces méthodes d'apprentissage à l'analyse du visage et de la reconnaissance des émotions. Cette thèse repose sur une étude préliminaire et trois articles, qui contribuent au domaine de la reconnaissance des émotions. L'étude préliminaire présente une nouvelle variante de Patterns Binaires Locales (PBL), qui est utilisé comme une représentation binaire de haute dimension des images faciales. Il est commun de créer des histogrammes de caractéristiques de PBL dans les régions d'images d'entrée. Toutefois, dans ce travail, ils sont utilisés en tant que vecteurs binaires de haute dimension qui sont extraits à des échelles multiples autour les points clés faciales détectées. Nous examinons un pipeline constitué de la réduction de la dimensionnalité non supervisé et supervisé, en utilisant l'Analyse en Composantes Principales (ACP) et l'Analyse Discriminante Fisher Locale (ADFL), suivi d'une Machine à Vecteurs de Support (MVS) comme classificateur pour la prédiction des expressions faciales. Les expériences montrent que les étapes de réduction de dimensionnalité fournissent de la robustesse en présence de bruit dans points clés. Cette approche atteint, lors de sa publication, des performances de l’état de l’art dans la reconnaissance de l'expression du visage sur l’ensemble de données Extended Cohn-Kanade (CK+) (Lucey et al, 2010) et sur la détection de sourire sur l’ensemble de données GENKI (GENKI-4K, 2008). Pour la tâche de détection de sourire, un profond Réseau Neuronal Convolutif (RNC) a été utilisé pour référence fiable. La reconnaissance de l'émotion dans les vidéos semblable à ceux de la vie de tous les jours, tels que les clips de films d'Hollywood dans l'Emotion Recognition in the Wild (EmotiW) challenge (Dhall et al, 2013), est beaucoup plus difficile que dans des environnements de laboratoire contrôlées. Le premier article est une analyse en profondeur de la entrée gagnante de l'EmotiW 2013 challenge (Kahou et al, 2013) avec des expériments supplémentaires sur l'ensemble de données du défi de l’an 2014. Le pipeline est constitué d'une combinaison de modèles d'apprentissage en profondeur, chacun spécialisé dans une modalité. Ces modèles comprennent une nouvelle technique d’agrégation de caractéristiques d’images individuelles pour permettre de transférer les caractéristiques apprises par réseaux convolutionnels (CNN) sur un grand ensemble de données d’expressions faciales, et de les application au domaine de l’analyse de contenu vidéo. On y trouve aussi un ``deep belief net'' (DBN) pour les caractéristiques audio, un pipeline de reconnaissance d’activité pour capturer les caractéristiques spatio-temporelles, ainsi qu’modèle de type ``bag-of-mouths'' basé sur k-means pour extraire les caractéristiques propres à la bouche. Plusieurs approches pour la fusion des prédictions des modèles spécifiques à la modalité sont comparés. La performance après un nouvel entraînement basé sur les données de 2014, établis avec quelques adaptations, est toujours comparable à l’état de l’art actuel. Un inconvénient de la méthode décrite dans le premier article est l'approche de l'agrégation de la modalité visuelle qui implique la mise en commun par image requiert un vecteur de longueur fixe. Cela ne tient pas compte de l'ordre temporel à l'intérieur des segments groupés. Les Réseau de Neurones Récurrents (RNR) sont des réseaux neuronaux construits pour le traitement séquentiel des données. Ils peuvent résoudre ce problème en résumant les images dans un vecteur de valeurs réelles qui est mis à jour à chaque pas de temps. En général, les RNR fournissent une façon d'apprendre une approche d'agrégation d'une manière axée sur les données. Le deuxième article analyse l'application d'un RNR sur les caractéristiques issues d’un réseau neuronal de convolution utilisé pour la reconnaissance des émotions dans la vidéo. Une comparaison de la RNR avec l'approche fondée sur pooling montre une amélioration significative des performances de classification. Il comprend également une fusion au niveau de la caractéristiques et au niveau de décision de modèles pour différentes modalités. En plus d’utiliser RNR comme dans les travaux antérieurs, il utilise aussi un modèle audio basé sur MVS, ainsi que l'ancien modèle d'agrégation qui sont fusionnées pour améliorer les performances sur l'ensemble de données de défi EmotiW 2015. Cette approche a terminé en troisième position dans le concours, avec une différence de seulement 1% dans la précision de classification par rapport au modèle gagnant. Le dernier article se concentre sur un problème de vision par ordinateur plus général, à savoir le suivi visuel. Un RNR est augmenté avec un mécanisme d'attention neuronal qui lui permet de se concentrer sur l'information liée à une tâche, ignorant les distractions potentielles dans la trame vidéo d'entrée. L'approche est formulée dans un cadre neuronal modulaire constitué de trois composantes: un module d'attention récurrente qui détermine où chercher, un module d'extraction de caractéristiques fournissant une représentation de quel objet est vu, et un module objectif qui indique pourquoi un comportement attentionnel est appris. Chaque module est entièrement différentiables, ce qui permet une optimisation simple à base de gradient. Un tel cadre pourrait être utilisé pour concevoir une solution de bout en bout pour la reconnaissance de l'émotion dans la vision, ne nécessitant pas les étapes initiales de détection de visage ou de localisation d’endroits d’intérêt. L'approche est présentée dans trois ensembles de données de suivi, y compris un ensemble de données du monde réel. En résumé, cette thèse explore et développe une multitude de techniques d'apprentissage en profondeur, complétant des étapes importantes en vue de l’objectif à long terme de la construction d'un système entraînable de bout en bout pour la reconnaissance des émotions.----------ABSTRACT Automatic recognition of human emotion has been studied for decades. It is one of the key components in human computer interaction with applications in health care, education, entertainment and advertisement. Emotion recognition is a challenging task as it involves predicting abstract emotional states from multi-modal input data. These modalities include video, audio and physiological signals. The visual modality is one of the most informative channels; especially facial expressions, which have been shown to be strong cues for the emotional state of a subject. A common automated emotion recognition system includes several processing steps, each of which has to be tuned and integrated into a pipeline. Such pipelines are often hand-engineered which can introduce strong assumptions about the properties of the task and data. Limiting assumptions and learning the processing pipeline from data often yields more general solutions. In recent years, deep learning methods have been shown to be able to learn good representations for various modalities. For many computer vision benchmarks, the gap between state-of-the-art algorithms based on deep neural networks and human performance is shrinking rapidly. These networks learn hierarchies of features. With increasing depth, these hierarchies can describe increasingly abstract concepts. This development suggests exploring the applications of such learning methods to facial analysis and emotion recognition. This thesis is based on a preliminary study and three articles, which contribute to the field of emotion recognition. The preliminary study introduces a new variant of Local Binary Patterns (LBPs), which is used as a high dimensional binary representation of facial images. It is common to create histograms of LBP features within regions of input images. However, in this work, they are used as high dimensional binary vectors that are extracted at multiple scales around detected facial keypoints. We examine a pipeline consisting of unsupervised and supervised dimensionality reduction, using Principal Component Analysis (PCA) and Local Fisher Discriminant Analysis (LFDA), followed by a Support Vector Machine (SVM) classifier for prediction of facial expressions. The experiments show that the dimensionality reduction steps provide robustness in the presence of noisy keypoints. This approach achieved state-of-the-art performance in facial expression recognition on the Extended Cohn-Kanade (CK+) data set (Lucey et al, 2010) and smile detection on the GENKI data set (GENKI-4K, 2008) at the time. For the smile detection task, a deep Convolutional Neural Network (CNN) was used as a strong baseline. Emotion recognition in close-to-real-world videos, such as the Hollywood film clips in the Emotion Recognition in the Wild (EmotiW) challenge (Dhall et al, 2013), is much harder than in controlled lab environments. The first article is an in-depth analysis of the EmotiW 2013 challenge winning entry (Kahou et al, 2013) with additional experiments on the data set of the 2014 challenge. The pipeline consists of a combination of deep learning models, each specializing on one modality. The models include the following: a novel aggregation of per-frame features helps to transfer powerful CNN features learned on a large pooled data set of facial expression images to the video domain, a Deep Belief Network (DBN) learns audio features, an activity recognition pipeline captures spatio-temporal motion features and a k-means based bag-of-mouths model extracts features around the mouth region. Several approaches for fusing the predictions of modality-specific models are compared. The performance after re-training on the 2014 data set with a few adaptions is still competitive to the new state-of-the-art. One drawback of the method described in the first article is the aggregation approach of the visual modality which involves pooling per-frame features into a fixed-length vector. This ignores the temporal order inside the pooled segments. Recurrent Neural Networks (RNNs) are neural networks built for sequential processing of data, which can address this issue by summarizing frames in a real-valued state vector that is updated at each time-step. In general, RNNs provide a way of learning an aggregation approach in a data-driven manner. The second article analyzes the application of an RNN on CNN features for emotion recognition in video. A comparison of the RNN with the pooling-based approach shows a significant improvement in classification performance. It also includes a feature-level fusion and decision-level fusion of models for different modalities. In addition to the RNN, the same activity pipeline as previous work, an SVM-based audio model and the old aggregation model are fused to boost performance on the EmotiW 2015 challenge data set. This approach was the second runner-up in the challenge with a small margin of 1% in classification accuracy to the challenge winner. The last article focuses on a more general computer vision problem, namely visual tracking. An RNN is augmented with a neural attention mechanism that allows it to focus on task-related information, ignoring potential distractors in input frames. The approach is formulated in a modular neural framework consisting of three components: a recurrent attention module controlling where to look, a feature-extraction module providing a representation of what is seen and an objective module which indicates why an attentional behaviour is learned. Each module is fully differentiable allowing simple gradient-based optimization. Such a framework could be used to design an end-to-end solution for emotion recognition in vision, potentially not requiring initial steps of face detection or keypoint localization. The approach is tested on three tracking data sets including one real-world data set. In summary, this thesis explores and develops a multitude of deep learning techniques, making significant steps towards a long-term goal of building an end-to-end trainable systems for emotion recognition

    Efficient audio signal processing for embedded systems

    Get PDF
    We investigated two design strategies that would allow us to efficiently process audio signals on embedded systems such as mobile phones and portable electronics. In the first strategy, we exploit properties of the human auditory system to process audio signals. We designed a sound enhancement algorithm to make piezoelectric loudspeakers sound "richer" and "fuller," using a combination of bass extension and dynamic range compression. We also developed an audio energy reduction algorithm for loudspeaker power management by suppressing signal energy below the masking threshold. In the second strategy, we use low-power analog circuits to process the signal before digitizing it. We designed an analog front-end for sound detection and implemented it on a field programmable analog array (FPAA). The sound classifier front-end can be used in a wide range of applications because programmable floating-gate transistors are employed to store classifier weights. Moreover, we incorporated a feature selection algorithm to simplify the analog front-end. A machine learning algorithm AdaBoost is used to select the most relevant features for a particular sound detection application. We also designed the circuits to implement the AdaBoost-based analog classifier.PhDCommittee Chair: Anderson, David; Committee Member: Hasler, Jennifer; Committee Member: Hunt, William; Committee Member: Lanterman, Aaron; Committee Member: Minch, Bradle

    Detecting and indexing moving objects for Behavior Analysis by Video and Audio Interpretation

    Get PDF
    2012 - 2013In the last decades we have assisted to a growing need for security in many public environments. According to a study recently conducted by the European Security Observatory, one half of the entire population is worried about the crime and requires the law enforcement to be protected. This consideration has lead the proliferation of cameras and microphones, which represent a suitable solution for their relative low cost of maintenance, the possibility of installing them virtually everywhere and, finally, the capability of analysing more complex events. However, the main limitation of this traditional audiovideo surveillance systems lies in the so called psychological overcharge issue of the human operators responsible for security, that causes a decrease in their capabilities to analyse raw data flows from multiple sources of multimedia information; indeed, as stated by a study conducted by Security Solutions magazine, after 12 minutes of continuous video monitoring, a guard will often miss up to 45% of screen activity. After 22 minutes of video, up to 95% is overlooked. For the above mentioned reasons, it would be really useful to have available an intelligent surveillance system, able to provide images and video with a semantic interpretation, for trying to bridge the gap between their low-level representation in terms of pixels, and the high-level, natural language description that a human would give about them. On the other hand, this kind of systems, able to automatically understand the events occurring in a scene, would be really useful in other application fields, mainly oriented to marketing purposes. Especially in the last years, a lot of business intelligent applications have been installed for assisting decision makers and for giving an organization’s employees, partners and suppliers easy access to the information they need to effectively do their jobs... [edited by author]XII n.s

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Adaptive threshold optimisation for colour-based lip segmentation in automatic lip-reading systems

    Get PDF
    A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in ful lment of the requirements for the degree of Doctor of Philosophy. Johannesburg, September 2016Having survived the ordeal of a laryngectomy, the patient must come to terms with the resulting loss of speech. With recent advances in portable computing power, automatic lip-reading (ALR) may become a viable approach to voice restoration. This thesis addresses the image processing aspect of ALR, and focuses three contributions to colour-based lip segmentation. The rst contribution concerns the colour transform to enhance the contrast between the lips and skin. This thesis presents the most comprehensive study to date by measuring the overlap between lip and skin histograms for 33 di erent colour transforms. The hue component of HSV obtains the lowest overlap of 6:15%, and results show that selecting the correct transform can increase the segmentation accuracy by up to three times. The second contribution is the development of a new lip segmentation algorithm that utilises the best colour transforms from the comparative study. The algorithm is tested on 895 images and achieves percentage overlap (OL) of 92:23% and segmentation error (SE) of 7:39 %. The third contribution focuses on the impact of the histogram threshold on the segmentation accuracy, and introduces a novel technique called Adaptive Threshold Optimisation (ATO) to select a better threshold value. The rst stage of ATO incorporates -SVR to train the lip shape model. ATO then uses feedback of shape information to validate and optimise the threshold. After applying ATO, the SE decreases from 7:65% to 6:50%, corresponding to an absolute improvement of 1:15 pp or relative improvement of 15:1%. While this thesis concerns lip segmentation in particular, ATO is a threshold selection technique that can be used in various segmentation applications.MT201

    Speech Intelligibility Prediction for Hearing Aid Systems

    Get PDF
    • …
    corecore