4,555 research outputs found

    Sentiment analysis on online social network

    Get PDF
    A large amount of data is maintained in every Social networking sites.The total data constantly gathered on these sites make it difficult for methods like use of field agents, clipping services and ad-hoc research to maintain social media data. This paper discusses the previous research on sentiment analysis

    User Inference Attacks on Large Language Models

    Full text link
    Fine-tuning is a common and effective method for tailoring large language models (LLMs) to specialized tasks and applications. In this paper, we study the privacy implications of fine-tuning LLMs on user data. To this end, we define a realistic threat model, called user inference, wherein an attacker infers whether or not a user's data was used for fine-tuning. We implement attacks for this threat model that require only a small set of samples from a user (possibly different from the samples used for training) and black-box access to the fine-tuned LLM. We find that LLMs are susceptible to user inference attacks across a variety of fine-tuning datasets, at times with near perfect attack success rates. Further, we investigate which properties make users vulnerable to user inference, finding that outlier users (i.e. those with data distributions sufficiently different from other users) and users who contribute large quantities of data are most susceptible to attack. Finally, we explore several heuristics for mitigating privacy attacks. We find that interventions in the training algorithm, such as batch or per-example gradient clipping and early stopping fail to prevent user inference. However, limiting the number of fine-tuning samples from a single user can reduce attack effectiveness, albeit at the cost of reducing the total amount of fine-tuning data

    Hyperparameters and neural architectures in differentially private deep learning

    Get PDF
    Using machine learning to improve health care has gained popularity. However, most research in machine learning for health has ignored privacy attacks against the models. Differential privacy (DP) is the state-of-the-art concept for protecting individuals' data from privacy attacks. Using optimization algorithms such as the DP stochastic gradient descent (DP-SGD), one can train deep learning models under DP guarantees. This thesis analyzes the impact of changes to the hyperparameters and the neural architecture on the utility/privacy tradeoff, the main tradeoff in DP, for models trained on the MIMIC-III dataset. The analyzed hyperparameters are the noise multiplier, clipping bound, and batch size. The experiments examine neural architecture changes regarding the depth and width of the model, activation functions, and group normalization. The thesis reports the impact of the individual changes independently of other factors using Bayesian optimization and thus overcomes the limitations of earlier work. For the analyzed models, the utility is more sensitive to changes to the clipping bound than to the other two hyperparameters. Furthermore, the privacy/utility tradeoff does not improve when allowing for more training runtime. The changes to the width and depth of the model have a higher impact than other modifications of the neural architecture. Finally, the thesis discusses the impact of the findings and limitations of the experiment design and recommends directions for future work

    ColdGANs: Taming Language GANs with Cautious Sampling Strategies

    Full text link
    Training regimes based on Maximum Likelihood Estimation (MLE) suffer from known limitations, often leading to poorly generated text sequences. At the root of these limitations is the mismatch between training and inference, i.e. the so-called exposure bias, exacerbated by considering only the reference texts as correct, while in practice several alternative formulations could be as good. Generative Adversarial Networks (GANs) can mitigate those limitations but the discrete nature of text has hindered their application to language generation: the approaches proposed so far, based on Reinforcement Learning, have been shown to underperform MLE. Departing from previous works, we analyze the exploration step in GANs applied to text generation, and show how classical sampling results in unstable training. We propose to consider alternative exploration strategies in a GAN framework that we name ColdGANs, where we force the sampling to be close to the distribution modes to get smoother learning dynamics. For the first time, to the best of our knowledge, the proposed language GANs compare favorably to MLE, and obtain improvements over the state-of-the-art on three generative tasks, namely unconditional text generation, question generation, and abstractive summarization

    Automatic Detection and Classification of Argument Components using Multi-task Deep Neural Network

    Get PDF
    International audienceIn this article we propose a novel method for automatically extracting and classifying argument components from raw texts. We introduce a multi-task deep learning framework exploiting weight parameters trained on auxiliary simple tasks, such as Part-Of-Speech tagging or chunking, in order to solve more complex tasks that require a fine-grained understanding of natural language. Interestingly, our results show that the use of advanced deep learning techniques framed in a multi-task setting enables competing with state-of-the-art systems that depend on handcrafted features

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    A Survey on Differential Privacy with Machine Learning and Future Outlook

    Full text link
    Nowadays, machine learning models and applications have become increasingly pervasive. With this rapid increase in the development and employment of machine learning models, a concern regarding privacy has risen. Thus, there is a legitimate need to protect the data from leaking and from any attacks. One of the strongest and most prevalent privacy models that can be used to protect machine learning models from any attacks and vulnerabilities is differential privacy (DP). DP is strict and rigid definition of privacy, where it can guarantee that an adversary is not capable to reliably predict if a specific participant is included in the dataset or not. It works by injecting a noise to the data whether to the inputs, the outputs, the ground truth labels, the objective functions, or even to the gradients to alleviate the privacy issue and protect the data. To this end, this survey paper presents different differentially private machine learning algorithms categorized into two main categories (traditional machine learning models vs. deep learning models). Moreover, future research directions for differential privacy with machine learning algorithms are outlined.Comment: 12 pages, 3 figure
    corecore