1,299 research outputs found

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória

    Optimization of craniosynostosis surgery: virtual planning, intraoperative 3D photography and surgical navigation

    Get PDF
    Mención Internacional en el título de doctorCraniosynostosis is a congenital defect defined as the premature fusion of one or more cranial sutures. This fusion leads to growth restriction and deformation of the cranium, caused by compensatory expansion parallel to the fused sutures. Surgical correction is the preferred treatment in most cases to excise the fused sutures and to normalize cranial shape. Although multiple technological advancements have arisen in the surgical management of craniosynostosis, interventional planning and surgical correction are still highly dependent on the subjective assessment and artistic judgment of craniofacial surgeons. Therefore, there is a high variability in individual surgeon performance and, thus, in the surgical outcomes. The main objective of this thesis was to explore different approaches to improve the surgical management of craniosynostosis by reducing subjectivity in all stages of the process, from the preoperative virtual planning phase to the intraoperative performance. First, we developed a novel framework for automatic planning of craniosynostosis surgery that enables: calculating a patient-specific normative reference shape to target, estimating optimal bone fragments for remodeling, and computing the most appropriate configuration of fragments in order to achieve the desired target cranial shape. Our results showed that automatic plans were accurate and achieved adequate overcorrection with respect to normative morphology. Surgeons’ feedback indicated that the integration of this technology could increase the accuracy and reduce the duration of the preoperative planning phase. Second, we validated the use of hand-held 3D photography for intraoperative evaluation of the surgical outcome. The accuracy of this technology for 3D modeling and morphology quantification was evaluated using computed tomography imaging as gold-standard. Our results demonstrated that 3D photography could be used to perform accurate 3D reconstructions of the anatomy during surgical interventions and to measure morphological metrics to provide feedback to the surgical team. This technology presents a valuable alternative to computed tomography imaging and can be easily integrated into the current surgical workflow to assist during the intervention. Also, we developed an intraoperative navigation system to provide real-time guidance during craniosynostosis surgeries. This system, based on optical tracking, enables to record the positions of remodeled bone fragments and compare them with the target virtual surgical plan. Our navigation system is based on patient-specific surgical guides, which fit into the patient’s anatomy, to perform patient-to-image registration. In addition, our workflow does not rely on patient’s head immobilization or invasive attachment of dynamic reference frames. After testing our system in five craniosynostosis surgeries, our results demonstrated a high navigation accuracy and optimal surgical outcomes in all cases. Furthermore, the use of navigation did not substantially increase the operative time. Finally, we investigated the use of augmented reality technology as an alternative to navigation for surgical guidance in craniosynostosis surgery. We developed an augmented reality application to visualize the virtual surgical plan overlaid on the surgical field, indicating the predefined osteotomy locations and target bone fragment positions. Our results demonstrated that augmented reality provides sub-millimetric accuracy when guiding both osteotomy and remodeling phases during open cranial vault remodeling. Surgeons’ feedback indicated that this technology could be integrated into the current surgical workflow for the treatment of craniosynostosis. To conclude, in this thesis we evaluated multiple technological advancements to improve the surgical management of craniosynostosis. The integration of these developments into the surgical workflow of craniosynostosis will positively impact the surgical outcomes, increase the efficiency of surgical interventions, and reduce the variability between surgeons and institutions.Programa de Doctorado en Ciencia y Tecnología Biomédica por la Universidad Carlos III de MadridPresidente: Norberto Antonio Malpica González.- Secretario: María Arrate Muñoz Barrutia.- Vocal: Tamas Ung

    The development and application of structural priors for diffuse optical imaging in infants from newborn to two years of age

    Get PDF
    This thesis describes the development and application of age-appropriate structural priors to improve the localisation accuracy of diffuse optical tomography (DOT) approaches in infants aged from birth to two years of age. Knowledge of the target cranial anatomy, known as a structural prior, is required to produce three-dimensional images localising concentration changes to the cortex. A structural prior would ideally be subject-specific, i.e. derived from structural magnetic resonance imaging (MRI) data from each specific subject. Requiring a structural scan from every infant participant, however, is not feasible and undermines many of the benefits of DOT. A review was conducted to catalogue available infant structural MRI data, and selected data was then used to produce structural priors for infants aged 1- to 24-months. Conventional analyses using functional near-infrared spectroscopy (fNIRS) implicitly assume that head size and array position are constant across infants. Using DOT, the validity of assuming these parameters constant in a longitudinal infant cohort was investigated. The results show that this assumption is reasonable at the group-level in infants aged 5- to 12-months but becomes less valid for smaller group sizes. A DOT approach was determined to illicit more subtle effects of activation, particularly for smaller group sizes and expected responses. Using state-of-the-art MRI data from the Developing Human Connectome Project, a database of structural priors of the neonatal head was produced for infants aged pre-term to term-equivalent age. A leave-one-out approach was used to determine how best to find a match between a given infant and a model from the database, and how best to spatially register the model to minimise the anatomical and localisation errors relative to subject-specific anatomy. Model selection based on the 10/20 scalp positions was determined to be the best method (of those based on external features of the head) to minimise these errors

    IE-Map: a novel in-vivo atlas and template of the human inner ear

    Get PDF
    Brain atlases and templates are core tools in scientific research with increasing importance also in clinical applications. Advances in neuroimaging now allowed us to expand the atlas domain to the vestibular and auditory organ, the inner ear. In this study, we present IE-Map, an in-vivo template and atlas of the human labyrinth derived from multi-modal high-resolution magnetic resonance imaging (MRI) data, in a fully non-invasive manner without any contrast agent or radiation. We reconstructed a common template from 126 inner ears (63 normal subjects) and annotated it with 94 established landmarks and semi-automatic segmentations of all relevant macroscopic vestibular and auditory substructures. We validated the atlas by comparing MRI templates to a novel CT/micro-CT atlas, which we reconstructed from 21 publicly available post-mortem images of the bony labyrinth. Templates in MRI and micro-CT have a high overlap, and several key anatomical measures of the bony labyrinth in IE-Map are in line with micro-CT literature of the inner ear. A quantitative substructural analysis based on the new template, revealed a correlation of labyrinth parameters with total intracranial volume. No effects of gender or laterality were found. We provide the validated templates, atlas segmentations, surface meshes and landmark annotations as open-access material, to provide neuroscience researchers and clinicians in neurology, neurosurgery, and otorhinolaryngology with a widely applicable tool for computational neuro-otology

    Evolution of design considerations in complex craniofacial reconstruction using patient-specific implants

    Get PDF
    Previously published evidence has established major clinical benefits from using Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), and Additive Manufacturing (AM) to produce patient-specific devices. These include cutting guides, drilling guides, positioning guides, and implants. However, custom devices produced using these methods are still not in routine use – particularly by the UK National Health Service (NHS). Oft-cited reasons for this slow uptake include: a higher up-front cost than conventionally-fabricated devices, material-choice uncertainty, and a lack of long-term follow-up due to their relatively recent introduction. This paper identifies a further gap in current knowledge – that of design rules, or key specification considerations for complex CAD/CAM/AM devices. This research begins to address the gap by combining a detailed review of the literature with first-hand experience of interdisciplinary collaboration on five craniofacial patient case-studies. In each patient case, bony lesions in the orbito-temporal region were segmented, excised, and reconstructed in the virtual environment. Three cases translated these digital plans into theatre via polymer surgical guides. Four cases utilised AM to fabricate titanium implants. One implant was machined from PolyEther Ether Ketone (PEEK). From the literature, articles with relevant abstracts were analysed to extract design considerations. 19 frequently-recurring design considerations were extracted from previous publications. 9 new design considerations were extracted from the case studies – on the basis of subjective clinical evaluation. These were synthesised to produce a design considerations framework to assist clinicians with prescribing and design engineers with modelling. Promising avenues for further research are proposed

    Cerebral F18 -FDG PET CT in Children: Patterns during Normal Childhood and Clinical Application of Statistical Parametric Mapping

    Get PDF
    The first aim was to recruit and analyse a high quality dataset of cerebral FDG PET CT scans in neurologically normal children. Using qualitative, semi-quantitative and statistical parametric mapping (SPM) techniques, the results showed that a pattern of FDG uptake similar to adults does not occur by one year of age as was previously believed, but the regional FDG uptake changes throughout childhood driven by differing age related regional rates of increasing FDG uptake. The second aim was to use this normal dataset in the clinical analysis of cerebral FDG PET CT scans in children with epilepsy and Neurofibromatosis type 1 (NF1). The normal dataset was validated for single-subject-versus-group SPM analysis and was highly specific for identifying the epileptogenic focus likely to result in a good post-operative outcome in children with epilepsy. Qualitative, semi-quantitative and group-versus-group SPM analyses were applied to FDG PET CT scans in children with NF1. The results showed reduced metabolism in the thalami and medial temporal lobes compared to neurologically normal children. This thesis has produced novel findings that advance the understanding of childhood brain development and has developed SPM techniques that can be applied to cerebral FDG PET CT scans in children with neurological disorders

    3D statistical shape analysis of the face in Apert syndrome

    Get PDF
    Timely diagnosis of craniofacial syndromes as well as adequate timing and choice of surgical technique are essential for proper care management. Statistical shape models and machine learning approaches are playing an increasing role in Medicine and have proven its usefulness. Frameworks that automate processes have become more popular. The use of 2D photographs for automated syndromic identification has shown its potential with the Face2Gene application. Yet, using 3D shape information without texture has not been studied in such depth. Moreover, the use of these models to understand shape change during growth and its applicability for surgical outcome measurements have not been analysed at length. This thesis presents a framework using state-of-the-art machine learning and computer vision algorithms to explore possibilities for automated syndrome identification based on shape information only. The purpose of this was to enhance understanding of the natural development of the Apert syndromic face and its abnormality as compared to a normative group. An additional method was used to objectify changes as result of facial bipartition distraction, a common surgical correction technique, providing information on the successfulness and on inadequacies in terms of facial normalisation. Growth curves were constructed to further quantify facial abnormalities in Apert syndrome over time along with 3D shape models for intuitive visualisation of the shape variations. Post-operative models were built and compared with age-matched normative data to understand where normalisation is coming short. The findings in this thesis provide markers for future translational research and may accelerate the adoption of the next generation diagnostics and surgical planning tools to further supplement the clinical decision-making process and ultimately to improve patients’ quality of life
    • …
    corecore