34,335 research outputs found

    Clinical evidence framework for Bayesian networks

    Get PDF
    There is poor uptake of prognostic decision support models by clinicians regardless of their accuracy. There is evidence that this results from doubts about the basis of the model as the evidence behind clinical models is often not clear to anyone other than their developers. In this paper, we propose a framework for representing the evidence-base of a Bayesian network (BN) decision support model. The aim of this evidence framework is to be able to present all the clinical evidence alongside the BN itself. The evidence framework is capable of presenting supporting and conflicting evidence, and evidence associated with relevant but excluded factors. It also allows the completeness of the evidence to be queried. We illustrate this framework using a BN that has been previously developed to predict acute traumatic coagulopathy, a potentially fatal disorder of blood clotting, at early stages of trauma care

    Learning from medical data streams: an introduction

    Get PDF
    Clinical practice and research are facing a new challenge created by the rapid growth of health information science and technology, and the complexity and volume of biomedical data. Machine learning from medical data streams is a recent area of research that aims to provide better knowledge extraction and evidence-based clinical decision support in scenarios where data are produced as a continuous flow. This year's edition of AIME, the Conference on Artificial Intelligence in Medicine, enabled the sound discussion of this area of research, mainly by the inclusion of a dedicated workshop. This paper is an introduction to LEMEDS, the Learning from Medical Data Streams workshop, which highlights the contributed papers, the invited talk and expert panel discussion, as well as related papers accepted to the main conference

    Defining a robust biological prior from Pathway Analysis to drive Network Inference

    Get PDF
    Inferring genetic networks from gene expression data is one of the most challenging work in the post-genomic era, partly due to the vast space of possible networks and the relatively small amount of data available. In this field, Gaussian Graphical Model (GGM) provides a convenient framework for the discovery of biological networks. In this paper, we propose an original approach for inferring gene regulation networks using a robust biological prior on their structure in order to limit the set of candidate networks. Pathways, that represent biological knowledge on the regulatory networks, will be used as an informative prior knowledge to drive Network Inference. This approach is based on the selection of a relevant set of genes, called the "molecular signature", associated with a condition of interest (for instance, the genes involved in disease development). In this context, differential expression analysis is a well established strategy. However outcome signatures are often not consistent and show little overlap between studies. Thus, we will dedicate the first part of our work to the improvement of the standard process of biomarker identification to guarantee the robustness and reproducibility of the molecular signature. Our approach enables to compare the networks inferred between two conditions of interest (for instance case and control networks) and help along the biological interpretation of results. Thus it allows to identify differential regulations that occur in these conditions. We illustrate the proposed approach by applying our method to a study of breast cancer's response to treatment

    Bayesian multi-modal model comparison: a case study on the generators of the spike and the wave in generalized spike–wave complexes

    Get PDF
    We present a novel approach to assess the networks involved in the generation of spontaneous pathological brain activity based on multi-modal imaging data. We propose to use probabilistic fMRI-constrained EEG source reconstruction as a complement to EEG-correlated fMRI analysis to disambiguate between networks that co-occur at the fMRI time resolution. The method is based on Bayesian model comparison, where the different models correspond to different combinations of fMRI-activated (or deactivated) cortical clusters. By computing the model evidence (or marginal likelihood) of each and every candidate source space partition, we can infer the most probable set of fMRI regions that has generated a given EEG scalp data window. We illustrate the method using EEG-correlated fMRI data acquired in a patient with ictal generalized spike–wave (GSW) discharges, to examine whether different networks are involved in the generation of the spike and the wave components, respectively. To this effect, we compared a family of 128 EEG source models, based on the combinations of seven regions haemodynamically involved (deactivated) during a prolonged ictal GSW discharge, namely: bilateral precuneus, bilateral medial frontal gyrus, bilateral middle temporal gyrus, and right cuneus. Bayesian model comparison has revealed the most likely model associated with the spike component to consist of a prefrontal region and bilateral temporal–parietal regions and the most likely model associated with the wave component to comprise the same temporal–parietal regions only. The result supports the hypothesis of different neurophysiological mechanisms underlying the generation of the spike versus wave components of GSW discharges

    Reliable Uncertain Evidence Modeling in Bayesian Networks by Credal Networks

    Full text link
    A reliable modeling of uncertain evidence in Bayesian networks based on a set-valued quantification is proposed. Both soft and virtual evidences are considered. We show that evidence propagation in this setup can be reduced to standard updating in an augmented credal network, equivalent to a set of consistent Bayesian networks. A characterization of the computational complexity for this task is derived together with an efficient exact procedure for a subclass of instances. In the case of multiple uncertain evidences over the same variable, the proposed procedure can provide a set-valued version of the geometric approach to opinion pooling.Comment: 19 page

    Post-mortem toxicology: A pilot study to evaluate the use of a Bayesian network to assess the likelihood of fatality

    Get PDF
    The challenge of interpreting post-mortem drug concentrations is well documented and relies on appropriate sample collection, knowledge of case circumstances as well as reference to published tables of data, whilst taking into account the known issues of post-mortem drug redistribution and tolerance. Existing published data has evolved from simple data tables to those now including sample origin and single to poly drug use, but additional information tends to be specific to those reported in individual case studies. We have developed a Bayesian network framework to assign a likelihood of fatality based on the contribution of drug concentrations whilst taking into account the pathological findings. This expert system has been tested against casework within the coronial jurisdiction of Sunderland, UK. We demonstrate in this pilot study that the Bayesian network can be used to proffer a degree of confidence in how deaths may be reported in cases when drugs are implicated. It has also highlighted the potential for deaths to be reported according to the pathological states at post-mortem when drugs have a significant contribution that may have an impact on mortality statistics. The Bayesian network could be used as complementary approach to assist in the interpretation of post-mortem drug concentrations
    • …
    corecore