1,792 research outputs found

    Utilization of Pyrosequencing to Monitor the Microbiome Dynamics of Probiotic Treated Poultry (Gallus gallus domesticus) during Downstream Poultry Processing

    Get PDF
    Antibiotic growth promoters that have been historically employed to control pathogens and increase the rate of animal development for human consumption are currently banned in many countries. Probiotics have been proposed as an alternative to control pathogenic bacteria. Traditional culture methods typically used to monitor probiotic effects on pathogens possess significant limitations such as a lack in sensitivity to detect fastidious and non-culturable bacteria, and are both time consuming and costly. Here, we tested next generation pyrosequencing technology as a streamline and economical method to monitor the effects of a probiotic on microbial communities in juvenile poultry (Gallus gallus domesticus) after exposure to several microbiological challenges and litter conditions. Seven days and repeated again at 39 days following hatching, chicks were challenged with either Salmonella enterica serovar Enteritidis, Campylobacter jejuni, or no bacteria in the presence of, or without a probiotic (i.e., Bacillus subtilis) added to the feed. Three days following each of two challenges (i.e., days 10 and 42, respectively) the microbiome distributions of the poultry caecum were characterized based on 16S rDNA analysis. Generated PCR products were analyzed by automated identification of the samples after pooling, multiplexing and sequencing. A bioinformatics pipeline was then employed to identify microbial distributions at the phylum and genus level for the treatments. In conclusion, our results demonstrated that pyrosequencing technology is a rapid, efficient and cost-effective method to monitor the effects of probiotics on the microbiome of poultry propagated in an agricultural setting

    Emerging Technologies for Gut Microbiome Research

    Get PDF
    Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches will improve the efficiency and quality of microbiome research. Here, we will discuss emerging technologies and their potential impact on gut microbiome studies

    Prevalence and characterization of avian pathogenic Escherichia coli and Campylobacter in Mississippi broilers

    Get PDF
    Avian pathogenic Escherichia. coli (APEC) and Campylobacter are pathogenic threats to poultry and human health, respectively. In this study, the prevalence of these pathogens in Mississippi broilers and their antimicrobial resistance (AMR) properties were investigated, and a multidrug-resistant APEC strain (APEC-O2-MS1170) was further explored by whole-genome sequencing (WGS). The efficacy of in ovo injection of Lactobacillus in reducing the APEC in broilers was evaluated. Results revealed a high prevalence of APEC and Campylobacter in broilers and broiler products. A lot of isolates were resistant to antibiotics of different sorts. Moreover, the in ovo administration of Lactobacillus did not reduce the incidence of APEC. The WGS of APEC-O2-MS1170 revealed its detailed AMR and virulence properties and alerted a potential zoonotic risk. In conclusion, the Lactobacillus did not reduce the incidence of APEC in broilers, and the prevalence and AMR of APEC and Campylobacter are still challenges faced by the poultry industry

    Exploring the faecal microbiome associated with preterm birth

    Get PDF
    Jacob Westaway investigated the gut microbiome of preterm infants born in North Queensland, Australia. He observed unique associations between the gut microbiome and the unfavourable covariates, as well as acute modulation in association with probiotic prophylaxis. This supports expansion of the probiotic supplementation criteria and highlights the importance of the microbiome in health

    Through the Microbial Looking Glass: Premature Labor, Preeclampsia, and Gestational Diabetes: A Scoping Review

    Get PDF
    The influence of microbial factors on adverse perinatal outcomes has become the focal point of recent investigations, with particular interest in the role of the microbiome and probiotic interventions. The purpose of this scoping review was to identify and critique the most recent evidence about these factors as they relate to pregnancies complicated by preeclampsia (PEC), preterm birth (PTB), and gestational diabetes mellitus (GDM). Four databases (PubMed, EMBASE, Web of Science, and Cochrane) were searched for articles published in English in the last 10 years with the concepts of the microbiome, probiotics, and PEC, PTB, or GDM. Forty-nine articles were eligible for full-text review. Five articles were excluded, leaving 44 articles that met all the eligibility criteria. The relationships between the microbiome and the risk for PEC, PTB, and GDM are not fully elucidated, although probiotic interventions seem beneficial in decreasing PEC and GDM risk. Probiotic interventions targeting bacterial vaginosis and elimination of infection in women at risk for PTB appear to be beneficial. More research is needed to understand the contributions of the microbiome to adverse perinatal outcomes. Probiotic interventions appear to be effective in reducing risk for select outcomes

    The intestinal microbiome of farmed rainbow trout Oncorhynchus mykiss (Walbaum)

    Get PDF
    The study of the gut microbiota of fish began in the 1930’s and since that time a considerable amount of information has been collated on its composition and diversity. These studies have revealed that the microbial communities of the fish gastrointestinal tract are generally difficult to culture on bacteriological media and mainly consist of bacteria, archaea, viruses, yeasts and protists. The bacteria appear to be the most abundant of these microbial groups and their activity may have major implications for host health, development, immunity and nutrition. Therefore, much of the most recent published research has focused on developing improved methods of identifying the extent of the bacterial diversity within the fish gut and unravelling the potential influence of these microorganisms on the health of farmed fish species. However, whilst such studies have improved our knowledge of the dominant bacterial groups present in the rainbow trout gastrointestinal tract, the limited resolution capacity of many of the methods used has meant that our understanding of their baseline composition in healthy fish remains poorly understood. In this study, the bacterial communities that inhabit the intestine, now commonly referred to as the ‘microbiome’, of farmed Rainbow trout (Oncorhynchus mykiss) were characterized using a culture independent high-throughput molecular sequencing method. The microbiome of the intestinal lumen and mucosa was investigated to ascertain the true extent of the bacterial diversity present in this fish species prior to further experiments. It was found that the diversity of the intestinal microbiome was greater than previous studies had reported with a total of 90 and 159 bacterial genera being identified in both the lumen and mucosal regions respectively. The dominant bacterial phyla identified in both of the regions investigated were Proteobacteria, Firmicutes, Fusobacteria, Bacteroidetes and Actinobacteria. Furthermore, the data collected suggested that the intestinal microbiome may be similar in structure between individual fish, and illustrate the utility of next generation molecular methods in the investigation of the fish gut microbiome. A study was conducted to examine the effect of diet on the composition of the intestinal microbiome of rainbow trout. Two diets, one control and one treatment, were prepared which were identical apart from that the treatment diet contained a microalgal component at 5% of the total formulation. These diets were fed to rainbow trout for a total of 15 weeks. At the end of the trial period a total of 12 fish, three from each of four tanks, were sacrificed from each of the control and treatment groups and their intestinal tissue was sampled in order to compare the composition of the microbiome of both groups. The results revealed that both groups of fish shared similar microbiome compositions, with the Tenericutes being by far the most dominant phylum observed. The structure of the intestinal microbiome was not significantly different between both populations of trout tested. An increased level of bacterial diversity was noted in the treatment fish, however, this was not found to be statistically significant. A limited number of bacterial taxa were discriminatory between diets and were significantly elevated in the treatment group. These taxa were predominantly lactic acid bacteria of the genera Streptococcus, Leuconstoc, Lactobacillus, Lactococcus and Weissella. The results of this study suggested that the minor difference in the diets fed resulted in a correspondingly minor alteration in the intestinal microbiome of the tested rainbow trout. This may indicate that diet composition can modify the composition of the intestinal microbiome of these fish. A further study was conducted to investigate the structure of the intestinal microbiome from groups of fish reared in both freshwater cages and aquarium systems, in order to assess whether or not fish raised in different environments share similar microbiomes. This study also employed a novel computational tool, PICRUSt, to analyse the predicted functional capacity of the microbial communities of individual fish sampled from both environments. The data collected suggested that the structure of the intestinal microbiome was similar regardless of where the fish were raised, with the Tenericutes, Firmicutes, Proteobacteria, Spirochaetae and Bacteroidetes representing the dominant bacterial phyla recorded in the rainbow trout intestine. This suggests that the host may regulate the formation of the intestinal microbiome. A significant difference was however noted in community membership between the fish populations tested, which may point to an environmental influence on the intestinal microbiome. These data suggest that both deterministic host factors and stochastic environmental influences play important roles in shaping the composition of the bacterial communities in the intestine of these fish. The PICRUSt analysis revealed that gene pathways relating to metabolism, transport and cellular processes were enhanced in all of the fish studied, which may signal an involvement of these communities in the digestive processes of rainbow trout. In conclusion, this study used high-throughput sequencing methods in order to improve our understanding of the intestinal microbiome of farmed rainbow trout, and the effect of dietary and environmental factors on its composition. This research has generated scientific information relating to baseline bacterial community compositions in healthy fish, which may be used in future experiments including screening these baselines against the effects of novel aquafeed formulations, environmental perturbations or pathogenic challenges
    • …
    corecore