2,586 research outputs found

    Clinical Text Prediction with Numerically Grounded Conditional Language Models

    Get PDF
    Assisted text input techniques can save time and effort and improve text quality. In this paper, we investigate how grounded and conditional extensions to standard neural language models can bring improvements in the tasks of word prediction and completion. These extensions incorporate a structured knowledge base and numerical values from the text into the context used to predict the next word. Our automated evaluation on a clinical dataset shows extended models significantly outperform standard models. Our best system uses both conditioning and grounding, because of their orthogonal benefits. For word prediction with a list of 5 suggestions, it improves recall from 25.03% to 71.28% and for word completion it improves keystroke savings from 34.35% to 44.81%, where theoretical bound for this dataset is 58.78%. We also perform a qualitative investigation of how models with lower perplexity occasionally fare better at the tasks. We found that at test time numbers have more influence on the document level than on individual word probabilities

    Clinical Text Prediction with Numerically Grounded Conditional Language Models

    Get PDF
    Assisted text input techniques can save time and effort and improve text quality. In this paper, we investigate how grounded and conditional extensions to standard neural language models can bring improvements in the tasks of word prediction and completion. These extensions incorporate a structured knowledge base and numerical values from the text into the context used to predict the next word. Our automated evaluation on a clinical dataset shows extended models significantly outperform standard models. Our best system uses both conditioning and grounding, because of their orthogonal benefits. For word prediction with a list of 5 suggestions, it improves recall from 25.03% to 71.28% and for word completion it improves keystroke savings from 34.35% to 44.81%, where theoretical bound for this dataset is 58.78%. We also perform a qualitative investigation of how models with lower perplexity occasionally fare better at the tasks. We found that at test time numbers have more influence on the document level than on individual word probabilities

    Numeracy for Language Models: Evaluating and Improving their Ability to Predict Numbers

    Get PDF
    Numeracy is the ability to understand and work with numbers. It is a necessary skill for composing and understanding documents in clinical, scientific, and other technical domains. In this paper, we explore different strategies for modelling numerals with language models, such as memorisation and digit-by-digit composition, and propose a novel neural architecture that uses a continuous probability density function to model numerals from an open vocabulary. Our evaluation on clinical and scientific datasets shows that using hierarchical models to distinguish numerals from words improves a perplexity metric on the subset of numerals by 2 and 4 orders of magnitude, respectively, over non-hierarchical models. A combination of strategies can further improve perplexity. Our continuous probability density function model reduces mean absolute percentage errors by 18% and 54% in comparison to the second best strategy for each dataset, respectively.Comment: accepted at ACL 201

    Numeracy of Language Models: Joint Modelling of Words and Numbers

    Get PDF
    Numeracy and literacy are the abilities to understand and work with numbers and words, respectively. While both skills are necessary for reading and writing documents in clinical, scientific, and other technical domains, existing statistical language models focus on words to the expense of numbers: numbers are ignored, masked, or treated similarly to words, which can obscure numerical content and cause sparsity issues, e.g. high out-of-vocabulary rates. In this thesis, we investigate whether the performance of neural language models can be improved by i) considering numerical information as additional inputs and ii) explicitly modelling the output of numerical tokens. In experiments with numbers as input, we find that numerical input features improve perplexity by 33% on a clinical dataset. In assisted text entry and verification tasks, numerical input features improve recall from 25.03% to 71.28% for word prediction with a list of 5 suggestions, keystroke savings from 34.35% to 44.81% for word completion, and F1 metric by 5 points for semantic error correction. Numerical information from an accompanying knowledge base helps improve performance further. In experiments with numerical tokens as output, we consider different strategies, e.g. memorisation and digit-by-digit composition, and propose a novel neural component based on Gaussian mixture density estimation. We propose the use of regression metrics to evaluate numerical accuracy and an adjusted perplexity metric that accounts for the high out-of-vocabulary rate of numerals. Our evaluation on clinical and scientific datasets shows that perplexity can be improved by more than 2 and 4 orders of magnitude, respectively, by modelling words and numerals with different sub-models through a hierarchical softmax. For the same datasets, our proposed mixture of Gaussians model achieved a 32% and 54% reduction of mean average percentage errors over the contender strategy, digit-by-digit composition. We conclude with a critical reflection of this thesis and suggestions for future work

    Numeracy for language models: Evaluating and improving their ability to predict numbers

    Get PDF
    Numeracy is the ability to understand and work with numbers. It is a necessary skill for composing and understanding documents in clinical, scientific, and other technical domains. In this paper, we explore different strategies for modelling numerals with language models, such as memorisation and digit-by-digit composition, and propose a novel neural architecture that uses a continuous probability density function to model numerals from an open vocabulary. Our evaluation on clinical and scientific datasets shows that using hierarchical models to distinguish numerals from words improves a perplexity metric on the subset of numerals by 2 and 4 orders of magnitude, respectively, over non-hierarchical models. A combination of strategies can further improve perplexity. Our continuous probability density function model reduces mean absolute percentage errors by 18% and 54% in comparison to the second best strategy for each dataset, respectively

    Realising stratified psychiatry using multidimensional signatures and trajectories

    Get PDF
    BACKGROUND: Stratified or personalised medicine targets treatments for groups of individuals with a disorder based on individual heterogeneity and shared factors that influence the likelihood of response. Psychiatry has traditionally defined diagnoses by constellations of co-occurring signs and symptoms that are assigned a categorical label (e.g. schizophrenia). Trial methodology in psychiatry has evaluated interventions targeted at these categorical entities, with diagnoses being equated to disorders. Recent insights into both the nosology and neurobiology of psychiatric disorder reveal that traditional categorical diagnoses cannot be equated with disorders. We argue that current quantitative methodology (1) inherits these categorical assumptions, (2) allows only for the discovery of average treatment response, (3) relies on composite outcome measures and (4) sacrifices valuable predictive information for stratified and personalised treatment in psychiatry. METHODS AND FINDINGS: To achieve a truly ‘stratified psychiatry’ we propose and then operationalise two necessary steps: first, a formal multi-dimensional representation of disorder definition and clinical state, and second, the similar redefinition of outcomes as multidimensional constructs that can expose within- and between-patient differences in response. We use the categorical diagnosis of schizophrenia—conceptualised as a label for heterogeneous disorders—as a means of introducing operational definitions of stratified psychiatry using principles from multivariate analysis. We demonstrate this framework by application to the Clinical Antipsychotic Trials of Intervention Effectiveness dataset, showing heterogeneity in both patient clinical states and their trajectories after treatment that are lost in the traditional categorical approach with composite outcomes. We then systematically review a decade of registered clinical trials for cognitive deficits in schizophrenia highlighting existing assumptions of categorical diagnoses and aggregate outcomes while identifying a small number of trials that could be reanalysed using our proposal. CONCLUSION: We describe quantitative methods for the development of a multi-dimensional model of clinical state, disorders and trajectories which practically realises stratified psychiatry. We highlight the potential for recovering existing trial data, the implications for stratified psychiatry in trial design and clinical treatment and finally, describe different kinds of probabilistic reasoning tools necessary to implement stratification
    • …
    corecore