521,709 research outputs found

    Development and Validation of Clinical Whole-Exome and Whole-Genome Sequencing for Detection of Germline Variants in Inherited Disease

    Get PDF
    Context.-With the decrease in the cost of sequencing, the clinical testing paradigm has shifted from single gene to gene panel and now whole-exome and whole-genome sequencing. Clinical laboratories are rapidly implementing next-generation sequencing-based whole-exome and whole-genome sequencing. Because a large number of targets are covered by whole-exome and whole-genome sequencing, it is critical that a laboratory perform appropriate validation studies, develop a quality assurance and quality control program, and participate in proficiency testing. Objective.-To provide recommendations for wholeexome and whole-genome sequencing assay design, validation, and implementation for the detection of germline variants associated in inherited disorders. Data Sources.-An example of trio sequencing, filtration and annotation of variants, and phenotypic consideration to arrive at clinical diagnosis is discussed. Conclusions.-It is critical that clinical laboratories planning to implement whole-exome and whole-genome sequencing design and validate the assay to specifications and ensure adequate performance prior to implementation. Test design specifications, including variant filtering and annotation, phenotypic consideration, guidance on consenting options, and reporting of incidental findings, are provided. These are important steps a laboratory must take to validate and implement whole-exome and whole-genome sequencing in a clinical setting for germline variants in inherited disorders

    Design Characteristics Influence Performance of Clinical Prediction Rules in Validation: A Meta-Epidemiological Study

    Get PDF
    BACKGROUND: Many new clinical prediction rules are derived and validated. But the design and reporting quality of clinical prediction research has been less than optimal. We aimed to assess whether design characteristics of validation studies were associated with the overestimation of clinical prediction rules' performance. We also aimed to evaluate whether validation studies clearly reported important methodological characteristics. METHODS: Electronic databases were searched for systematic reviews of clinical prediction rule studies published between 2006 and 2010. Data were extracted from the eligible validation studies included in the systematic reviews. A meta-analytic meta-epidemiological approach was used to assess the influence of design characteristics on predictive performance. From each validation study, it was assessed whether 7 design and 7 reporting characteristics were properly described. RESULTS: A total of 287 validation studies of clinical prediction rule were collected from 15 systematic reviews (31 meta-analyses). Validation studies using case-control design produced a summary diagnostic odds ratio (DOR) 2.2 times (95% CI: 1.2-4.3) larger than validation studies using cohort design and unclear design. When differential verification was used, the summary DOR was overestimated by twofold (95% CI: 1.2 -3.1) compared to complete, partial and unclear verification. The summary RDOR of validation studies with inadequate sample size was 1.9 (95% CI: 1.2 -3.1) compared to studies with adequate sample size. Study site, reliability, and clinical prediction rule was adequately described in 10.1%, 9.4%, and 7.0% of validation studies respectively. CONCLUSION: Validation studies with design shortcomings may overestimate the performance of clinical prediction rules. The quality of reporting among studies validating clinical prediction rules needs to be improved

    The role of laboratory medicine in healthcare: quality requirements of immunoassays, standardisation and data management in prospective medicine

    Get PDF
    In the last 10 years, the area of ELISA and protein-chip technology has developed and enthusiastically applied to an enormous variety of biological questions. However, the degree of stringency required in data analysis appears to have been underestimated. As a result, there are numerous published findings that are of questionable quality, requiring further confirmation and/or validation. In the course of feasibility and validation studies a number of key issues in research, development and clinical trial studies must be outlined, including those associated with laboratory design, analytical validation strategies, analytical completeness and data managements. The scope of the following review should provide assistance for defining key parameters in assay evaluation and validation in research and clinical trial projects in prospective medicine

    E-infrastructures fostering multi-centre collaborative research into the intensive care management of patients with brain injury

    Get PDF
    Clinical research is becoming ever more collaborative with multi-centre trials now a common practice. With this in mind, never has it been more important to have secure access to data and, in so doing, tackle the challenges of inter-organisational data access and usage. This is especially the case for research conducted within the brain injury domain due to the complicated multi-trauma nature of the disease with its associated complex collation of time-series data of varying resolution and quality. It is now widely accepted that advances in treatment within this group of patients will only be delivered if the technical infrastructures underpinning the collection and validation of multi-centre research data for clinical trials is improved. In recognition of this need, IT-based multi-centre e-Infrastructures such as the Brain Monitoring with Information Technology group (BrainIT - www.brainit.org) and Cooperative Study on Brain Injury Depolarisations (COSBID - www.cosbid.de) have been formed. A serious impediment to the effective implementation of these networks is access to the know-how and experience needed to install, deploy and manage security-oriented middleware systems that provide secure access to distributed hospital based datasets and especially the linkage of these data sets across sites. The recently funded EU framework VII ICT project Advanced Arterial Hypotension Adverse Event prediction through a Novel Bayesian Neural Network (AVERT-IT) is focused upon tackling these challenges. This chapter describes the problems inherent to data collection within the brain injury medical domain, the current IT-based solutions designed to address these problems and how they perform in practice. We outline how the authors have collaborated towards developing Grid solutions to address the major technical issues. Towards this end we describe a prototype solution which ultimately formed the basis for the AVERT-IT project. We describe the design of the underlying Grid infrastructure for AVERT-IT and how it will be used to produce novel approaches to data collection, data validation and clinical trial design is also presented

    Validating archetypes for the Multiple Sclerosis Functional Composite

    Get PDF
    Background Numerous information models for electronic health records, such as openEHR archetypes are available. The quality of such clinical models is important to guarantee standardised semantics and to facilitate their interoperability. However, validation aspects are not regarded sufficiently yet. The objective of this report is to investigate the feasibility of archetype development and its community-based validation process, presuming that this review process is a practical way to ensure high-quality information models amending the formal reference model definitions. Methods A standard archetype development approach was applied on a case set of three clinical tests for multiple sclerosis assessment: After an analysis of the tests, the obtained data elements were organised and structured. The appropriate archetype class was selected and the data elements were implemented in an iterative refinement process. Clinical and information modelling experts validated the models in a structured review process. Results Four new archetypes were developed and publicly deployed in the openEHR Clinical Knowledge Manager, an online platform provided by the openEHR Foundation. Afterwards, these four archetypes were validated by domain experts in a team review. The review was a formalised process, organised in the Clinical Knowledge Manager. Both, development and review process turned out to be time- consuming tasks, mostly due to difficult selection processes between alternative modelling approaches. The archetype review was a straightforward team process with the goal to validate archetypes pragmatically. Conclusions The quality of medical information models is crucial to guarantee standardised semantic representation in order to improve interoperability. The validation process is a practical way to better harmonise models that diverge due to necessary flexibility left open by the underlying formal reference model definitions. This case study provides evidence that both community- and tool- enabled review processes, structured in the Clinical Knowledge Manager, ensure archetype quality. It offers a pragmatic but feasible way to reduce variation in the representation of clinical information models towards a more unified and interoperable model

    Validating archetypes for the Multiple Sclerosis Functional Composite

    Get PDF
    Background Numerous information models for electronic health records, such as openEHR archetypes are available. The quality of such clinical models is important to guarantee standardised semantics and to facilitate their interoperability. However, validation aspects are not regarded sufficiently yet. The objective of this report is to investigate the feasibility of archetype development and its community-based validation process, presuming that this review process is a practical way to ensure high-quality information models amending the formal reference model definitions. Methods A standard archetype development approach was applied on a case set of three clinical tests for multiple sclerosis assessment: After an analysis of the tests, the obtained data elements were organised and structured. The appropriate archetype class was selected and the data elements were implemented in an iterative refinement process. Clinical and information modelling experts validated the models in a structured review process. Results Four new archetypes were developed and publicly deployed in the openEHR Clinical Knowledge Manager, an online platform provided by the openEHR Foundation. Afterwards, these four archetypes were validated by domain experts in a team review. The review was a formalised process, organised in the Clinical Knowledge Manager. Both, development and review process turned out to be time- consuming tasks, mostly due to difficult selection processes between alternative modelling approaches. The archetype review was a straightforward team process with the goal to validate archetypes pragmatically. Conclusions The quality of medical information models is crucial to guarantee standardised semantic representation in order to improve interoperability. The validation process is a practical way to better harmonise models that diverge due to necessary flexibility left open by the underlying formal reference model definitions. This case study provides evidence that both community- and tool- enabled review processes, structured in the Clinical Knowledge Manager, ensure archetype quality. It offers a pragmatic but feasible way to reduce variation in the representation of clinical information models towards a more unified and interoperable model

    The Sleep Condition Indicator: a clinical screening tool to evaluate insomnia disorder

    Get PDF
    Objective: Describe the development and psychometric validation of a brief scale (the Sleep Condition Indicator (SCI)) to evaluate insomnia disorder in everyday clinical practice.<p></p> Design: The SCI was evaluated across five study samples. Content validity, internal consistency and concurrent validity were investigated.<p></p> Participants: 30 941 individuals (71% female) completed the SCI along with other descriptive demographic and clinical information.<p></p> Setting: Data acquired on dedicated websites.<p></p> Results: The eight-item SCI (concerns about getting to sleep, remaining asleep, sleep quality, daytime personal functioning, daytime performance, duration of sleep problem, nights per week having a sleep problem and extent troubled by poor sleep) had robust internal consistency (α≥0.86) and showed convergent validity with the Pittsburgh Sleep Quality Index and Insomnia Severity Index. A two-item short-form (SCI-02: nights per week having a sleep problem, extent troubled by poor sleep), derived using linear regression modelling, correlated strongly with the SCI total score (r=0.90).<p></p> Conclusions: The SCI has potential as a clinical screening tool for appraising insomnia symptoms against Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria.<p></p&gt
    • …
    corecore