539 research outputs found

    City-Climber: A New Generation Wall-Climbing Robots

    Get PDF

    Engineering Micropatterned Dry Adhesives: From Contact Theory to Handling Applications

    Get PDF
    Reversible adhesion is the key functionality to grip, place, and release objects nondestructively. Inspired by nature, micropatterned dry adhesives are promising candidates for this purpose and have attracted the attention of research groups worldwide. Their enhanced adhesion compared to nonpatterned surfaces is frequently demonstrated. An important conclusion is that the contact mechanics involved is at least as important as the surface energy and chemistry. In this paper, the roles of the contact geometry and mechanical properties are reviewed. With a focus on applications, the effects of substrate roughness and of temperature variations, and the long-term performance of micropatterned adhesives are discussed. The paper provides a link between the current, detailed understanding of micropatterned adhesives and emerging applications

    Rapid and continuous regulating adhesion strength by mechanical micro-vibration

    Get PDF
    Controlled tuning of interface adhesion is crucial to a broad range of applications, such as space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices. Here, we show a robust and predictable method to continuously regulate interface adhesion by exciting the mechanical micro-vibration in the adhesive system perpendicular to the contact plane. An analytic model reveals the underlying mechanism of adhesion hysteresis and dynamic instability. For a typical PDMS-glass adhesion system, the apparent adhesion strength can be enhanced by 77 times or weakened to 0. Notably, the resulting adhesion switching timescale is comparable to that of geckos (15 ms), and such rapid adhesion switching can be repeated for more than 2×10^7 vibration cycles without any noticeable degradation in the adhesion performance. Our method is independent of surface microstructures and does not require a preload, representing a simple and practical way to design and control surface adhesion in relevant applications

    The superhydrophobicity of polymer surfaces: Recent developments

    Get PDF
    Superhydrophobicity is the extreme water repellence of highly textured surfaces. The field of superhydrophobicity research has reached a stage where huge numbers of candidate treatments have been proposed and jumps have been made in theoretically describing them. There now seems to be a move to more practical concerns and to considering the demands of individual applications instead of more general cases. With these developments, polymeric surfaces with their huge variety of properties have come to the fore and are fast becoming the material of choice for designing, developing, and producing superhydrophobic surfaces. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1203–1217, 201

    Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.

    Get PDF
    We have systematically studied the macroscopic adhesive properties of vertically aligned nanotube arrays with various packing density and roughness. Using a tensile setup in shear and normal adhesion, we find that there exists a maximum packing density for nanotube arrays to have adhesive properties. Too highly packed tubes do not offer intertube space for tube bending and side-wall contact to surfaces, thus exhibiting no adhesive properties. Likewise, we also show that the surface roughness of the arrays strongly influences the adhesion properties and the reusability of the tubes. Increasing the surface roughness of the array strengthens the adhesion in the normal direction, but weakens it in the shear direction. Altogether, these results allow progress toward mimicking the gecko's vertical mobility.The authors acknowledge funding from the EC project Technotubes.This is the accepted manuscript. The final version is available at http://pubs.acs.org/doi/abs/10.1021/am507822b
    corecore